Abstract:MicroRNA (miRNA) is a non-coding single-stranded RNA with a length of approximately 22 nucleotides and is mainly responsible for the regulation of gene expression at the post-transcriptional level. At present, miRNA have become potential biomarkers for various diseases such as tumor, leukemia, and nervous system disease. Muscle-specific microRNAs are enriched in the skeletal muscle of patients with Duchenne muscular dystrophy (DMD) and also play an important role in the pathogenesis of DMD. Creatine kinase has limited specificity in the diagnosis of DMD since its level is not significantly associated with disease severity, and therefore, it is of great clinical significance to explore whether muscle-specific microRNAs can be used as ideal biomarkers for DMD. This article reviews the research advances in this field.
Mendell JR, Shilling C, Leslie ND, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy[J]. Ann Neurol, 2012, 71(3):304-313.
[2]
Ma G, Wang Y, Li Y, et al. MiR-206, a key modulator of skeletal muscle development and disease[J]. Int J Biol Sci, 2015, 11(3):345-352.
[3]
Zhou YL, Sun Q, Zhang L, et al. miR-208b targets Bax to protect H9c2 cells against hypoxia-induced apoptosis[J]. Biomed Pharmacother, 2018, 106:1751-1759.
[4]
Ge G, Yang D, Tan Y, et al. miR-10b-5p regulates C2C12 myoblasts proliferation and differentiation[J]. Biosci Biotechnol Biochem, 2019, 83(2):291-299.
[5]
Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[6]
Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature, 2000, 404(6775):293-296.
[7]
Kong Q, Shu N, Li J, et al. miR-641 functions as a tumor suppressor by targeting MDM2 in human lung cancer[J]. Oncol Res, 2018, 26(5):735-741.
[8]
Myatt SS, Wang J, Monteiro LJ, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer[J]. Cancer Res, 2010, 70(1):367-377.
[9]
Yaribeygi H, Katsiki N, Behnam B, et al. MicroRNAs and type 2 diabetes mellitus:molecular mechanisms and the effect of antidiabetic drug treatment[J]. Metabolism, 2018, 87:48-55.
[10]
Manna I, Iaccino E, Dattilo V, et al. Exosome-associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients[J]. FASEB J, 2018, 32(8):4241-4246.
[11]
Biró O, Fóthi Á, Alasztics B, et al. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia[J]. Gene, 2019, 692:138-144.
[12]
Singh R, Ramasubramanian B, Kanji S, et al. Circulating microRNAs in cancer:hope or hype?[J]. Cancer Lett, 2016, 381(1):113-121.
[13]
Kim K, Yoo D, Lee HS, et al. Identification of potential biomarkers for diagnosis of pancreatic and biliary tract cancers by sequencing of serum microRNAs[J]. BMC Med Genomics, 2019, 12(1):62.
[14]
Khalid U, Newbury LJ, Simpson K, et al. A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation[J]. Sci Rep, 2019, 9(1):3584.
Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development[J]. Dev Biol, 2016, 410(1):1-13.
[17]
Small EM, O'Rourke JR, Moresi V, et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486[J]. Proc Natl Acad Sci U S A, 2010, 107(9):4218-4223.
[18]
van Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J]. Dev Cell, 2009, 17(5):662-673.
[19]
Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brainexpressed microRNAs with possible roles in murine and human neuronal differentiation[J]. Genome Biol, 2004, 5(3):R13.
[20]
Siracusa J, Koulmann N, Banzet S. Circulating myomiRs:a new class of biomarkers to monitor skeletal muscle in physiology and medicine[J]. J Cachexia Sarcopenia Muscle, 2018, 9(1):20-27.
Coenen-Stass AM, Betts CA, Lee YF, et al. Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation[J]. Hum Mol Genet, 2016, 25(18):3960-3974.
[23]
Li X, Li Y, Zhao L, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients[J]. Mol Ther Nucleic Acids, 2014, 3:e177.
[24]
Hu J, Kong M, Ye Y, et al. Serum miR-206 and other musclespecific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy[J]. J Neurochem, 2014, 129(5):877-883.
[25]
Zaharieva IT, Calissano M, Scoto M, et al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy[J]. PLoS One, 2013, 8(11):e80263.
[26]
Koutsoulidou A, Mastroyiannopoulos NP, Furling D, et al. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle[J]. BMC Dev Biol, 2011, 11:34.
[27]
Llano-Diez M, Ortez CI, Gay JA, et al. Digital PCR quantification of miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2017, 27(1):15-23.
[28]
He C, Yang J, Ding J, et al. Downregulation of glucose-6-phosphate dehydrogenase by microRNA-1 inhibits the growth of pituitary tumor cells[J]. Oncol Rep, 2018, 40(6):3533-3542.
[29]
Cacchiarelli D, Martone J, Girardi E, et al. MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway[J]. Cell Metab, 2010, 12(4):341-351.
[30]
Saccone V, Consalvi S, Giordani L, et al. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles[J]. Genes Dev, 2014, 28(8):841-857.
[31]
Goljanek-Whysall K, Mok GF, Fahad Alrefaei A, et al. myomiRdependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis[J]. Development, 2014, 141(17):3378-3387.
[32]
Liu N, Williams AH, Maxeiner JM, et al. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice[J]. J Clin Invest, 2012, 122(6):2054-2065.
[33]
Amirouche A, Jahnke VE, Lunde JA, et al. Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations[J]. Am J Physiol Cell Physiol, 2017, 312(3):C209-C221.
[34]
Bulaklak K, Xiao B, Qiao C, et al. MicroRNA-206 downregulation improves therapeutic gene expression and motor function in mdx mice[J]. Mol Ther Nucleic Acids, 2018, 12:283-293.
[35]
Alexander MS, Casar JC, Motohashi N, et al. MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms[J]. J Clin Invest, 2014, 124(6):2651-2667.
[36]
Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7[J]. Mol Cell Biol, 2011, 31(1):203-214.
[37]
Liu J, Liang X, Zhou D, et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit[J]. EMBO Mol Med, 2016, 8(10):1212-1228.
Hathout Y, Seol H, Han MH, et al. Clinical utility of serum biomarkers in Duchenne muscular dystrophy[J]. Clin Proteomics, 2016, 13:9.
[44]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105(30):10513-10518.
[45]
Ge Q, Zhou Y, Lu J, et al. miRNA in plasma exosome is stable under different storage conditions[J]. Molecules, 2014, 19(2):1568-1575.
[46]
Mraz M, Malinova K, Mayer J, et al. MicroRNA isolation and stability in stored RNA samples[J]. Biochem Biophys Res Commun, 2009, 390(1):1-4.
Mizuno H, Nakamura A, Aoki Y, et al. Identification of musclespecific microRNAs in serum of muscular dystrophy animal models:promising novel blood-based markers for muscular dystrophy[J]. PLoS One, 2011, 6(3):e18388.
[49]
Wilson K, Faelan C, Patterson-Kane JC, et al. Duchenne and Becker muscular dystrophies:a review of animal models, clinical end points, and biomarker quantification[J]. Toxicol Pathol, 2017, 45(7):961-976.
[50]
Cacchiarelli D, Legnini I, Martone J, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy[J]. EMBO Mol Med, 2011, 3(5):258-265.
[51]
Matsuzaka Y, Kishi S, Aoki Y, et al. Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for Limb-girdle muscular dystrophy, Facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy[J]. Environ Health Prev Med, 2014, 19(6):452-458.
[52]
Walton JN, Nattrass FJ. On the classification, natural history and treatment of the myopathies[J]. Brain, 1954, 77(2):169-231.
[53]
Domingos J, Sarkozy A, Scoto M, et al. Dystrophinopathies and limb-girdle muscular dystrophies[J]. Neuropediatrics, 2017, 48(4):262-272.
[54]
Giliberto F, Ferreiro V, Massot F, et al. Prenatal diagnosis of Duchenne/Becker muscular dystrophy by short tandem repeat segregation analysis in Argentine families[J]. Muscle Nerve, 2011, 43(4):510-517.
[55]
Florian A, Patrascu A, Tremmel R, et al. Identification of cardiomyopathy-associated circulating miRNA biomarkers in muscular dystrophy female carriers using a complementary cardiac imaging and plasma profiling approach[J]. Front Physiol, 2018, 9:1770.
[56]
Anaya-Segura MA, Rangel-Villalobos H, Martínez-Cortés G, et al. Serum levels of microRNA-206 and novel mini-STR assays for carrier detection in Duchenne muscular dystrophy[J]. Int J Mol Sci, 2016, 17(8). pii:E1334.