Abstract:Gene panel and whole exome sequencing are now commonly used to detect Mendelian disease, but the current molecular diagnostic rate of DNA sequencing is only 35%-50%. In recent years, RNA sequencing emerges as a promising diagnostic method. It can detect new pathogenic mutations, and analyze allele-specific expression. This will be helpful to understand the relationship between disease genotype and phenotype, and can complement genome sequencing in order to expand the traditional genomic diagnostic methods of Mendelian disease. RNA sequencing is expected to become a routine tool for diagnosing Mendelian diseases. This article reviews the application of RNA sequencing in the clinical diagnosis of Mendelian disease.
Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for Mendelian disease gene discovery[J]. Nat Rev Genet, 2011, 12(11):745-755.
[2]
van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology[J]. Trends Genet, 2014, 30(9):418-426.
[3]
Taylor JC, Martin HC, Lise S, et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders[J]. Nat Genet, 2015, 47(7):717-726.
[4]
Wortmann SB, Koolen DA, Smeitink JA, et al. Whole exome sequencing of suspected mitochondrial patients in clinical practice[J]. J Inherit Metab Dis, 2015, 38(3):437-443.
[5]
Kress W, Rost S, Kolokotronis K, et al. The genetic approach:next-generation sequencing-based diagnosis of congenital and infantile myopathies/muscle dystrophies[J]. Neuropediatrics, 2017, 48(4):242-246.
[6]
Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases[J]. NPJ Genom Med, 2018, 3:16.
[7]
Powis Z, Farwell Hagman KD, Speare V, et al. Exome sequencing in neonates:diagnostic rates, characteristics, and time to diagnosis[J]. Genet Med, 2018, 20(11):1468-1471.
[8]
Mertes F, Elsharawy A, Sauer S, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing[J]. Brief Funct Genomics, 2011, 10(6):374-386.
[9]
Volk AE, Kubisch C. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases[J]. Curr Opin Neurol, 2017, 30(5):523-528.
[10]
Meienberg J, Bruggmann R, Oexle K, et al. Clinical sequencing:is WGS the better WES?[J]. Hum Genet, 2016, 135(3):359-362.
[11]
Stavropoulos DJ, Merico D, Jobling R, et al. Whole genome sequencing expands diagnostic utility and improves clinical management in pediatric medicine[J]. NPJ Genom Med, 2016, 1:15012.
[12]
Lionel AC, Costain G, Monfared N, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test[J]. Genet Med, 2018, 20(4):435-443.
[13]
Meynert AM, Ansari M, Fitzpatrick DR, et al. Variant detection sensitivity and biases in whole genome and exome sequencing[J]. BMC Bioinformatics, 2014, 15(1):247.
[14]
Lohmann K, Klein C. Next generation sequencing and the future of genetic diagnosis[J]. Neurotherapeutics, 2014, 11(4):699-707.
[15]
Schuelke M, Øien NC, Oldfors A. Myopathology in the times of modern genetics[J]. Neuropathol Appl Neurobiol, 2017, 43(1):44-61.
[16]
Cirulli ET, Singh A, Shianna KV, et al. Screening the human exome:a comparison of whole genome and whole transcriptome sequencing[J]. Genome Biol, 2010, 11(5):R57.
[17]
Darras BT, Jones HR. Diagnosis of pediatric neuromuscular disorders in the era of DNA analysis[J]. Pediatr Neurol, 2000, 23(4):289-300.
[18]
Bönnemann CG, Wang CH, Quijano-Roy S, et al. Diagnostic approach to the congenital muscular dystrophies[J]. Neuromuscul Disord, 2014, 24(4):289-311.
[19]
Stenson PD, Mort M, Ball EV, et al. The human gene mutation database:towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies[J]. Hum Genet, 2017, 136(6):665-677.
[20]
Zhang H, He L, Cai L. Transcriptome sequencing:RNA-seq[J]. Methods Mol Biol, 2018, 1754:15-27.
Chepelev I, Wei G, Tang Q, et al. Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq[J]. Nucleic Acids Res, 2009, 37(16):e106.
[23]
Short PJ, McRae JF, Gallone G, et al. De novo mutations in regulatory elements in neurodevelopmental disorders[J]. Nature, 2018, 555(7698):611-616.
[24]
Ku CS, Wu M, Cooper DN, et al. Exome versus transcriptome sequencing in identifying coding region variants[J]. Expert Rev Mol Diagn, 2012, 12(3):241-251.
[25]
Wirka RC, Pjanic M, Quertermous T. Advances in transcri-ptomics:investigating cardiovascular disease at unprecedented resolution[J]. Circ Res, 2018, 122(9):1200-1220.
[26]
Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing[J]. Sci Transl Med, 2017, 9(386):eaal5209.
[27]
Hamanaka K, Miyatake S, Koshimizu E, et al. RNA sequencing solved the most common but unrecognized NEB pathogenic variant in Japanese nemaline myopathy[J]. Genet Med, 2019, 21(7):1629-1638.
[28]
Gonorazky HD, Naumenko S, Ramani AK, et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease[J]. Am J Hum Genet, 2019, 104(5):1007.
[29]
Frésard L, Smail C, Ferraro NM, et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts[J]. Nat Med, 2019, 25(6):911-919.
[30]
Starokadomskyy P, Gemelli T, Rios JJ, et al. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis[J]. Nat Immunol, 2016, 17(5):495-504.
[31]
Nieminen TT, Pavicic W, Porkka N, et al. Pseudoexons provide a mechanism for allele-specific expression of APC in familial adenomatous polyposis[J]. Oncotarget, 2016, 7(43):70685-70698.
[32]
Romano M, Buratti E, Baralle D. Role of pseudoexons and pseudointrons in human cancer[J]. Int J Cell Biol, 2013, 2013:810572.
[33]
Lee H, Huang AY, Wang LK, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases[J]. Genet Med, 2020, 22(3):490-499.
[34]
Gonorazky H, Liang M, Cummings B, et al. RNAseq analysis for the diagnosis of muscular dystrophy[J]. Ann Clin Transl Neurol, 2016, 3(1):55-60.
[35]
Kremer LS, Bader DM, Mertes C, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing[J]. Nat Commun, 2017, 8:15824.
[36]
Chakravorty S, Berger K, Arafat D, et al. Clinical utility of RNA sequencing to resolve unusual GNE myopathy with a novel promoter deletion[J]. Muscle Nerve, 2019, 60(1):98-103.
[37]
Mohammadi P, Castel SE, Cummings BB, et al. Genetic regulatory variation in populations informs transcriptome analysis in rare disease[J]. Science, 2019, 366(6463):351-356.
[38]
Kremer LS, Wortmann SB, Prokisch H. "Transcriptomics":molecular diagnosis of inborn errors of metabolism via RNA-sequencing[J]. J Inherit Metab Dis, 2018, 41(3):525-532.
[39]
Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy[J]. N Engl J Med, 2017, 377(18):1723-1732.
[40]
Krupp M, Marquardt JU, Sahin U, et al. RNA-Seq Atlas-a reference database for gene expression profiling in normal tissue by next-generation sequencing[J]. Bioinformatics, 2012, 28(8):1184-1185.
[41]
Li X, Kim Y, Tsang EK, et al. The impact of rare variation on gene expression across tissues[J]. Nature, 2017, 550(7675):239-243.
[42]
Papatheodorou I, Fonseca NA, Keays M, et al. Expression Atlas:gene and protein expression across multiple studies and organisms[J]. Nucleic Acids Res, 2018, 46(D1):D246-D251.
[43]
Kim P, Park A, Han G, et al. TissGDB:tissue-specific gene database in cancer[J]. Nucleic Acids Res, 2018, 46(D1):D1031-D1038.