上皮-间充质转化在高氧诱导大鼠支气管肺发育不良模型中的作用及机制研究

林雅婷, 颜崇兵, 洪文超, 蔡成, 龚小慧

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (7) : 765-773.

PDF(4373 KB)
HTML
PDF(4373 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (7) : 765-773. DOI: 10.7499/j.issn.1008-8830.2312112
论著·实验研究

上皮-间充质转化在高氧诱导大鼠支气管肺发育不良模型中的作用及机制研究

  • 林雅婷, 颜崇兵, 洪文超, 蔡成, 龚小慧
作者信息 +

Role and mechanism of epithelial-mesenchymal transition in a rat model of bronchopulmonary dysplasia induced by hyperoxia exposure

  • LIN Ya-Ting, YAN Chong-Bin, HONG Wen-Chao, CAI Cheng, GONG Xiao-Hui
Author information +
文章历史 +

摘要

目的 探讨上皮-间充质转化(epithelial-mesenchymal transition, EMT)在大鼠支气管肺发育不良(bronchopulmonary dysplasia, BPD)模型中的作用及机制。 方法 实验分为两部分。(1)将48只早产大鼠随机分为常氧组和高氧组,每组24只。高氧组暴露于85%氧气中建立早产大鼠BPD模型,常氧组置于同一室内常压空气中,于实验第1、4、7、14天收集早产大鼠肺组织标本。(2)将大鼠肺泡Ⅱ型上皮细胞系(RLE-6TN)随机分为常氧组(常规空气中培养)和高氧组(在95%氧气中培养),分别于高氧暴露后12 h、24 h、48 h收集细胞标本进行检测。使用苏木精-伊红染色法观察早产大鼠肺泡化情况,免疫荧光检测早产大鼠肺组织和RLE-6TN细胞肺表面活性蛋白C(surfactant protein C, SPC)和α-平滑肌肌动蛋白(α-smooth muscle actin, α-SMA)的共定位。实时荧光定量聚合酶链反应和蛋白免疫印迹法检测早产大鼠肺组织和RLE-6TN细胞EMT相关mRNA和蛋白表达水平。 结果 (1)与常氧组相比,高氧暴露7 d开始高氧组早产鼠可见肺泡化阻滞和肺泡结构简单化改变;肺组织中SPC和α-SMA存在明显共定位现象,高氧暴露7 d、14 d时,与常氧组比较,高氧组SPC表达减少,α-SMA表达增加;高氧暴露7 d、14 d时,与常氧组比较,高氧组TGF-β1、α-SMA、N-钙黏蛋白mRNA和蛋白表达水平升高(P<0.05),SPC、E-钙黏蛋白mRNA和蛋白表达水平降低(P<0.05)。(2)高氧暴露24 h、48 h时,与常氧组比较,高氧组SPC表达减少,α-SMA表达增加;高氧暴露48 h时,与常氧组比较,高氧组SPC、E-钙黏蛋白mRNA和蛋白表达降低(P<0.05),TGF-β1、α-SMA、N-钙黏蛋白mRNA和蛋白表达升高(P<0.05)。 结论 EMT破坏了BPD早产大鼠肺泡上皮细胞之间的紧密连接,造成肺泡结构简单化和发育异常,参与了BPD的发生发展。

Abstract

Objective To investigate the role and mechanism of epithelial-mesenchymal transition (EMT) in a rat model of bronchopulmonary dysplasia (BPD). Methods The experiment consisted of two parts. (1) Forty-eight preterm rats were randomly divided into a normoxia group and a hyperoxia group, with 24 rats in each group. The hyperoxia group was exposed to 85% oxygen to establish a BPD model, while the normoxia group was kept in room air at normal pressure. Lung tissue samples were collected on days 1, 4, 7, and 14 of the experiment. (2) Rat type II alveolar epithelial cells (RLE-6TN) were randomly divided into a normoxia group (cultured in air) and a hyperoxia group (cultured in 95% oxygen), and cell samples were collected 12, 24, and 48 hours after hyperoxia exposure. Hematoxylin-eosin staining was used to observe alveolarization in preterm rat lungs, and immunofluorescence was used to detect the co-localization of surfactant protein C (SPC) and α-smooth muscle actin (α-SMA) in preterm rat lung tissue and RLE-6TN cells. Quantitative real-time polymerase chain reaction and protein immunoblotting were used to detect the expression levels of EMT-related mRNA and proteins in preterm rat lung tissue and RLE-6TN cells. Results (1) Compared with the normoxia group, the hyperoxia group showed blocked alveolarization and simplified alveolar structure after 7 days of hyperoxia exposure. Co-localization of SPC and α-SMA was observed in lung tissue, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 7 and 14 days of hyperoxia exposure compared to the normoxia group. In the hyperoxia group, the mRNA and protein levels of TGF-β1, α-SMA, and N-cadherin were increased, while the mRNA and protein levels of SPC and E-cadherin were decreased at 7 and 14 days of hyperoxia exposure compared to the normoxia group (P<0.05). (2) SPC and α-SMA was observed in RLE-6TN cells, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 24 and 48 hours of hyperoxia exposure compared to the normoxia group. Compared to the normoxia group, the mRNA and protein levels of SPC and E-cadherin in the hyperoxia group were decreased, while the mRNA and protein levels of TGF-β1, α-SMA, and E-cadherin in the hyperoxia group increased at 48 hours of hyperoxia exposure (P<0.05). Conclusions EMT disrupts the tight connections between alveolar epithelial cells in a preterm rat model of BPD, leading to simplified alveolar structure and abnormal development, and is involved in the development of BPD. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 765-773

关键词

支气管肺发育不良 / 上皮-间充质转化 / 肺泡Ⅱ型上皮细胞 / 紧密连接 / 早产大鼠

Key words

Bronchopulmonary dysplasia / Epithelial-mesenchymal transition / Type Ⅱ alveolar epithelial cell / Tight junction / Preterm rat

引用本文

导出引用
林雅婷, 颜崇兵, 洪文超, 蔡成, 龚小慧. 上皮-间充质转化在高氧诱导大鼠支气管肺发育不良模型中的作用及机制研究[J]. 中国当代儿科杂志. 2024, 26(7): 765-773 https://doi.org/10.7499/j.issn.1008-8830.2312112
LIN Ya-Ting, YAN Chong-Bin, HONG Wen-Chao, CAI Cheng, GONG Xiao-Hui. Role and mechanism of epithelial-mesenchymal transition in a rat model of bronchopulmonary dysplasia induced by hyperoxia exposure[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(7): 765-773 https://doi.org/10.7499/j.issn.1008-8830.2312112

参考文献

1 Shukla VV, Ambalavanan N. Recent advances in bronchopulmonary dysplasia[J]. Indian J Pediatr, 2021, 88(7): 690-695. PMID: 34018135. DOI: 10.1007/s12098-021-03766-w.
2 Li Y, Cui Y, Wang C, et al. A risk factor analysis on disease severity in 47 premature infants with bronchopulmonary dysplasia[J]. Intractable Rare Dis Res, 2015, 4(2): 82-86. PMID: 25984426. PMCID: PMC4428191. DOI: 10.5582/irdr.2015.01000.
3 Shin SH, Shin SH, Kim SH, et al. The association of pregnancy-induced hypertension with bronchopulmonary dysplasia: a retrospective study based on the Korean neonatal network database[J]. Sci Rep, 2020, 10(1): 5600. PMID: 32221404. PMCID: PMC7101434. DOI: 10.1038/s41598-020-62595-7.
4 Schittny JC. Development of the lung[J]. Cell Tissue Res, 2017, 367(3): 427-444. PMID: 28144783. PMCID: PMC5320013. DOI: 10.1007/s00441-016-2545-0.
5 Salimi U, Dummula K, Tucker MH, et al. Postnatal sepsis and bronchopulmonary dysplasia in premature infants: mechanistic insights into "new BPD"[J]. Am J Respir Cell Mol Biol, 2022, 66(2): 137-145. PMID: 34644520. PMCID: PMC8845139. DOI: 10.1165/rcmb.2021-0353PS.
6 Yang CG, Mao XL, Wu JF, et al. Amelioration of lung fibrosis by total flavonoids of Astragalus via inflammatory modulation and epithelium regeneration[J]. Am J Chin Med, 2023, 51(2): 373-389. PMID: 36655684. DOI: 10.1142/S0192415X23500192.
7 Marconi GD, Fonticoli L, Rajan TS, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells, 2021, 10(7): 1587. PMID: 34201858. PMCID: PMC8307661. DOI: 10.3390/cells10071587.
8 Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs[J]. Semin Cancer Biol, 2022, 86(Pt 2): 136-145. PMID: 36183999. PMCID: PMC10155902. DOI: 10.1016/j.semcancer.2022.09.004.
9 Gloushankova NA, Zhitnyak IY, Rubtsova SN. Role of epithelial-mesenchymal transition in tumor progression[J]. Biochemistry (Mosc), 2018, 83(12): 1469-1476. PMID: 30878022. DOI: 10.1134/S0006297918120052.
10 Yao HC, Zhu Y, Lu HY, et al. Type 2 innate lymphoid cell-derived amphiregulin regulates type II alveolar epithelial cell transdifferentiation in a mouse model of bronchopulmonary dysplasia[J]. Int Immunopharmacol, 2023, 122: 110672. DOI: 10.1016/j.intimp.2023.110672.
11 Zhang X, Chu X, Weng B, et al. An innovative model of bronchopulmonary dysplasia in premature infants[J]. Front Pediatr, 2020, 8: 271. PMID: 32537448 PMCID: PMC7267036 DOI: 10.3389/fped.2020.00271.
12 Wu D, Bai D, Yang M, et al. Role of Sox9 in BPD and its effects on the Wnt/β-catenin pathway and AEC-II differentiation[J]. Cell Death Discov. 2024 Jan 11;10(1):20. DOI: 10.1038/s41420-023-01795-2.
13 Schmidt AR, Ramamoorthy C. Bronchopulmonary dysplasia. Paediatr Anaesth[J]. 2022 Feb;32(2):174-180. DOI: 10.1111/pan.14365.
14 Chen X, Peng W, Zhou R, et al. Montelukast improves bronchopulmonary dysplasia by inhibiting epithelial?mesenchymal transition via inactivating the TGF?β1/smads signaling pathway[J]. Mol Med Rep, 2020, 22(3): 2564-2572. PMID: 32705209. DOI: 10.3892/mmr.2020.11306.
15 Feng Z, Jing Z, Li Q, et al. Exosomal STIMATE derived from type II alveolar epithelial cells controls metabolic reprogramming of tissue-resident alveolar macrophages. Theranostics, 13(3): 991-1009. PMID:36793853. PMCID: PMC9925314[J]. DOI: 10.7150/thno.82552.
16 Yang H, Fu J, Yao L, et al. Runx3 is a key modulator during the epithelial-mesenchymal transition of alveolar type II cells in animal models of BPD[J]. Int J Mol Med, 2017, 40(5): 1466-1476. PMID: 28949375. PMCID: PMC5627869. DOI: 10.3892/ijmm.2017.3135.
17 Yang JX, Li M, Chen XO, et al. Lipoxin a(4) ameliorates lipopolysaccharide-induced lung injury through stimulating epithelial proliferation, reducing epithelial cell apoptosis and inhibits epithelial-mesenchymal transition[J]. Respir Res, 2019, 20(1): 192. DOI: 10.1186/s12931-019-1158-z.
18 Zhang Z, Qu J, Zheng C, et al. Nrf2 antioxidant pathway suppresses numb-mediated epithelial-mesenchymal transition during pulmonary fibrosis[J]. Cell Death Dis, 2018, 9(2): 83. PMID: 29362432. PMCID: PMC5833372. DOI: 10.1038/s41419-017-0198-x.
19 Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. PMID: 30594349. DOI: 10.1016/j.tcb.2018.12.001.
20 Zhenye L, Chuzhong L, Youtu W, et al. The expression of TGF-β1, Smad3, phospho-Smad3 and Smad7 is correlated with the development and invasion of nonfunctioning pituitary adenomas[J]. J Transl Med, 2014, 12: 71. PMID: 24636138. PMCID: PMC3995298. DOI: 10.1186/1479-5876-12-71.
21 Tian M, Schiemann WP. TGF-β stimulation of EMT programs elicits non-genomic ER-α activity and anti-estrogen resistance in breast cancer cells[J]. J Cancer Metastasis Treat, 2017, 3: 150-160. PMID: 28955730. PMCID: PMC5612668. DOI: 10.20517/2394-4722.2017.38.

基金

上海市“科技创新行动计划”医学创新研究专项基金。

PDF(4373 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/