IL-21及其受体在自身免疫性疾病中的作用

杨德娟, 韩波

中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (5) : 466-471.

PDF(1534 KB)
HTML
PDF(1534 KB)
HTML
中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (5) : 466-471. DOI: 10.7499/j.issn.1008-8830.2016.05.017
综述

IL-21及其受体在自身免疫性疾病中的作用

  • 杨德娟, 韩波
作者信息 +

Roles of interleukin-21 and its receptor in autoimmune diseases

  • YANG De-Juan, HAN Bo
Author information +
文章历史 +

摘要

白细胞介素21(IL-21)是IL-2家族中的新成员,主要由活化的CD4+T细胞和自然杀伤(NKT)细胞合成和分泌。白细胞介素21受体(IL-21R)主要表达在T、B及NK细胞上。IL-21与其受体结合后主要通过激活JAKs-STATs信号通路,调节T、B及NK细胞的活化和增殖发挥生物学功能。作为新型的免疫调节因子,IL-21及其受体在多种自身免疫性疾病的发生发展中扮演着重要的角色,调节IL-21和IL-21R的表达水平或应用阻断剂阻断它们的信号传导通路可作为自身免疫性疾病新的治疗方法。

Abstract

Interleukin-21 (IL-21) is a new member of the interleukin-2 family. It is mainly synthesized and secreted by the activated of CD4+ T cells and natural killer T cells. IL-21 receptor (IL-21R) is mainly expressed in T cells, B cells, and natural killer (NK) cells. After binding to its receptor, IL-21 can regulate the activation and proliferation of T cells, B cells, and NK cells through activating JAKs-STATs signaling pathways. As a new immunoregulatory factor, IL-21 and its receptor play important roles in the development and progression of various autoimmune diseases. Regulation of the expression levels of IL-21 and IL-21R and blocking of their signal transduction pathways with blockers may be new treatment options for autoimmune diseases.

关键词

白细胞介素-21 / 白细胞介素-21受体 / 自身免疫性疾病

Key words

Interleukin-21 / Interleukin-21 receptor / Autoimmune disease

引用本文

导出引用
杨德娟, 韩波. IL-21及其受体在自身免疫性疾病中的作用[J]. 中国当代儿科杂志. 2016, 18(5): 466-471 https://doi.org/10.7499/j.issn.1008-8830.2016.05.017
YANG De-Juan, HAN Bo. Roles of interleukin-21 and its receptor in autoimmune diseases[J]. Chinese Journal of Contemporary Pediatrics. 2016, 18(5): 466-471 https://doi.org/10.7499/j.issn.1008-8830.2016.05.017

参考文献

[1] Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity[J]. Annu Rev Immunol, 2008, 26: 57-79.
[2] Rosanne S, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential[J]. Nat Rev Drug Discov, 2014, 13(5): 379-395.
[3] Wang T, Diaz-Rosales P, Costa MM, et al. Functional characterization of a nonmammalian IL-21: rainbow trout Oncorhynchus mykiss IL-21 upregulates the expression of the Th cell signature cytokines IFN-γ, IL-10, and IL-22[J]. J Immunol, 2011, 186(2): 708-721.
[4] Wan CK, Andraski AB, Spolski R, et al. Opposing roles of STAT1 and STAT3 in IL-21 function in CD4+ T cells[J]. Proc Nat Acad Sci USA, 2015, 112(30): 9394-9399.
[5] Moens L, Tangye SG. Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage[J]. Front Immunol, 2014, 5: 65.
[6] Ye BH, Bi E, Yu JJ, et al. A tumor-suppressive role of the IL-21R/Jak/STAT3 pathway in the germinal center B cell subtype of diffuse large B cell lymphomas[J]. Cancer Res, 2013, 73(8 Supplement): 3041.
[7] Ding BB, Bi E, Chen H, et al. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells[J]. J Immunol, 2013, 190(4): 1827-1836.
[8] Karnell JL, Ettinger R. The interplay of IL-21 and BAFF in the formation and maintenance of human B cell memory[J]. Front Immunol, 2012, 3(2): 1-9.
[9] Salzer E, Kansu A, Sic H, et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency[J]. J Allergy Clin Immunol, 2014, 133(6): 1651-1659.
[10] Kroenke MA, Eto D, Locci M, et al. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell (Tfh) differentiation[J]. J Immunol, 2012, 188(8): 3734-3744.
[11] Choi YS, Yang JA, Yusuf I, et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory[J]. J Immunol, 2013, 190(8): 4014-4026.
[12] Bollig N, Brüstle A, Kellner K, et al. Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation [J]. Proc Natl Acad Sci USA, 2012, 109(22): 8664-8669.
[13] Shane C. Follicular helper CD4 T cells (TFH)[J]. Annu Rev Immunol, 2011, 29: 621-663.
[14] Sage PT, Alvarez D, Godec J, et al.Circulating T follicular regulatory and helper cells have memory-like properties[J]. J Clin Invest, 2014, 124(12): 5191-5204.
[15] Zhou L, Ivanov II, Spolski R, et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J]. Nat Immunol, 2007, 8(9): 967-974.
[16] Zhu S, Phatarpekar PV, Denman CJ, et al. Transcription of the activating receptor NKG2D in natural killer cells is regulated by STAT3 tyrosine phosphorylation[J]. Blood, 2014, 124(3): 403-411.
[17] Kotlarz D, Ziętara N, Uzel G, et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome[J]. J Exp Med, 2013, 210(3): 433-443.
[18] Rothwell L, Hu T, Wu Z, et al. Chicken interleukin-21 is costimulatory for T cells and blocks maturation of dendritic cells[J]. Dev Comp Immunol, 2012, 36(2): 475-482.
[19] Wan CK, Oh J, Li P, et al. The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells[J]. Immunity, 2013, 38(3): 514-527.
[20] Ferreira RC, Simons HZ, Thompson WS, et al. IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients[J]. Diabetologia, 2015, 58(4): 781-790.
[21] Sutherland APR, Van Belle T, Wurster AL, et al. Interleukin-21 is required for the development of type 1 diabetes in NOD mice[J]. Diabetes, 2009, 58(5): 1144-1155.
[22] Chen XL, Bobbala D, Rodriguez GM, et al. Induction of autoimmune diabetes in non-obese diabetic mice requires interleukin-21-dependent activation of autoreactive CD8+ T cells[J]. Clin Exp Immunol, 2013, 173(2): 184-194.
[23] Lin X, Hamilton-Williams EE, Rainbow DB, et al. Genetic interactions amongIdd3, Idd5.1, Idd5.2 and Idd5.3 protective loci in the NOD mouse model of type 1 diabetes[J]. J Immunol, 2013, 190(7): 3109-3120.
[24] Spolski R, Leonard WJ. The Yin and Yang of Interleukin-21 in allergy, autoimmunity and cancer[J]. Curr Opin Immunol, 2008, 20(3): 295-301.
[25] Liu R, Wu Q, Su D, et al. A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis[J]. Arthritis Res Ther, 2012, 14(6): R255.
[26] Young DA, Hegen M, Ma HLM, et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis[J]. Arthritis Rheum, 2007, 56(4): 1152-1163.
[27] Nakou M, Papadimitraki ED, Fanouriakis A, et al. Interleukin-21 is increased in active systemic lupus erythematosus patients and contributes to the generation of plasma B cells[J]. Clin Exp Rheumatol, 2013, 31(2): 172-179.
[28] Lee J, Shin EK, Lee SY, et al. Oestrogen up-regulates interleukin-21 production by CD4+ T lymphocytes in patients with systemic lupus erythematosus[J]. Immunology, 2014, 142(4): 573-580.
[29] Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model[J]. Autoimmun Rev, 2014, 13(9): 963-973.
[30] Bubier JA, Sproule TJ, Foreman O, et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice[J]. Proc Nat Aca Sci USA, 2009, 106(5): 1518-1523.
[31] Herber D, Brown TP, Liang S, et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R. Fc reduces disease progression[J]. J Immunol, 2007, 178(6): 3822-3830.
[32] Rankin A L, Guay H, Herber D, et al. IL-21 receptor is required for the systemic accumulation of activated B and T lymphocytes in MRL/MpJ-Faslpr/lpr/J mice[J]. J Immunol, 2012, 188(4): 1656-1667.
[33] Hughes T, Kim-Howard X, Kelly JA, et al. Fine mapping and trans-ethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21[J]. Arthritis Rheumatol, 2011, 63(6): 1689-1697.
[34] Lan Y, Luo B, Wang JL, et al. The association of interleukin-21 polymorphisms with interleukin-21 serum levels and risk of systemic lupus erythematosus[J]. Gene, 2014, 538(1): 94-98.
[35] Dong L, Chen Y, Masaki Y, et al. Possible mechanisms of lymphoma development in Sjögren's syndrome[J]. Curr Immunol Rev, 2013, 9(1): 13-22.
[36] Kang KY, Kim HO, Kwok SK, et al. Impact of interleukin-21 in the pathogenesis of primary Sjögren's syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands[J]. Arthritis Res Ther, 2011, 13(5): R179.
[37] 袁双龙, 蒋莉, 张晓莉, 等. 原发性干燥综合症患者血清 IL-21 水平及其临床意义[J]. 细胞与分子免疫学杂志, 2007, 23(2): 124-126.
[38] Hundorfean G, Neurath M F, Mudter J. Functional relevance of T helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2012, 18(1): 180-186.
[39] 司方明. IL-21 及其受体表达与溃疡性结肠炎分级的相关性
[J]. 军医进修学院学报, 2009, 30(4): 479-480.
[40] De Nitto D, Sarra M, Pallone F, et al. Interleukin-21 triggers effector cell responses in the gut[J]. World J Gastroenterol, 2010, 16(29): 3638-3641.
[41] 晁康, 钟碧慧, 张盛洪, 等. CD4+T 细胞亚群失衡与溃疡性结肠炎[J]. 中华医学杂志, 2011, 91(23): 1605-1608.
[42] 徐毅晖, 杨元生, 陈垦, 等. IL-21/STAT3 通路在溃疡性结肠炎小鼠发病中的表达及其意义[J]. 国际医药卫生导报, 2012, 18(22): 3235-3238.
[43] Shi J, Zhou L, Zhernakova A, et al. Haplotype-based analysis of ulcerative colitis risk loci identifies both IL2 and IL21 as susceptibility genes in Han Chinese[J]. Inflamm Bowel Dis, 2011, 17(12): 2472-2479.
[44] Li Y, Rauniyar VK, Yin WF, et al. Serum IL-21 levels decrease with glucocorticoid treatment in myasthenia gravis[J]. Neurol Sci, 2014, 35(1): 29-34.
[45] 胡波, 田晓琳, 黄慧芬, 等. 重症肌无力患者外周血中 IL-21 的表达及其与血清抗 AChR 抗体类别转换的关系[J]. 中南大学学报 ( 医学版), 2010, 35(9): 958-963.
[46] Yi JS, Guidon A, Sparks S, et al. Characterization of CD4 and CD8 T cell responses in MuSK myasthenia gravis[J]. J Autoimmun, 2014, 52: 130-138.
[47] Kong Q, Sun B, Bai S, et al. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-β[J]. J Neuroimmunol, 2009, 207(1): 83-91.
[48] Liu W, Dienz O, Roberts B, et al. IL-21R expression on CD8+ T cells promotes CD8+ T cell activation in coxsackievirus B3 induced myocarditis[J]. Exp Molec Pathol, 2012, 92(3): 327-333.
[49] 王焱, 李刚, 唐吉仙, 等. 白细胞介素-21 及其相关因子在大鼠自身免疫性心肌炎急性期各时程中的表达[J]. 中华心血管病杂志, 2012 , 40(1): 43-49.

PDF(1534 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/