
Duchenne型肌营养不良基因治疗研究进展
A review of gene therapy for Duchenne muscular dystrophy
Duchenne型肌营养不良(DMD)是由编码抗肌萎缩蛋白的DMD基因突变导致的X连锁隐性遗传病。它的特点是进行性肌无力和因缺乏抗肌萎缩蛋白而导致的骨骼肌和心肌退化。患儿多于2~5岁起病,常在20岁左右死于心力衰竭或呼吸功能不全。目前,临床上多采用支持疗法改善疾病症状,但并不能改变疾病的最终结局。基因治疗的兴起为该病的治愈提供了希望。本文总结了DMD的基因替代疗法,包括腺相关病毒介导的DMD基因转导技术、肌营养不良蛋白相关蛋白(utrophin)上调技术和成簇规律间隔的短回文重复序列基因编辑技术的研究进展,并为解决腺相关病毒载量、转基因产物的长期有效表达、utrophin蛋白表达量问题提出的建议进行综述,为研究者们进一步研究提供参考。
Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary disease caused by mutations in the DMD gene that encodes dystrophin. It is characterized by progressive muscle weakness and degeneration of skeletal muscle and myocardium due to the absence of dystrophin. The disease often occurs at the age of 2-5 years, and most children may die of heart failure or respiratory insufficiency at the age of around 20 years. At present, supportive therapy is often used in clinical practice to improve symptoms, but this cannot improve the outcome of this disease. The development of gene therapy brings new hope to the cure of this disease. This article summarizes gene replacement therapy for DMD, including the research advances in DMD gene transduction technology mediated by adeno-associated virus, utrophin protein upregulation technology, and clustered regularly interspaced short palindromic repeat gene editing technology, and reviews the recommendations to solve the issues of adeno-associated viral load, long-term effective expression of transgenic products, and utrophin protein expression, in order to provide a reference for further research.
Duchenne型肌营养不良 / 腺相关病毒 / 肌营养不良蛋白相关蛋白 / 成簇规律间隔的短回文重复序列技术 / 儿童
Duchenne muscular dystrophy / Adeno-associated virus / Utrophin / Clustered regularly interspaced short palindromic repeat / Child
[1] 戴毅, 崔丽英. Duchenne型肌营养不良分子发病机制及基因治疗新进展[J]. 中华神经科杂志, 2011, 44(5):350-353.
[2] 何若洁, 张成. Duchenne型肌营养不良症骨骼肌损害的免疫机制及其治疗研究[J]. 中华神经科杂志, 2016, 49(7):574-578.
[3] 刘延波, 徐乃军, 贾飞勇. Duchenne肌营养不良(DMD)发病机制及治疗研究进展[J]. 生命科学, 2012, 24(4):354-361.
[4] 吴志英, 陈雪娇. 肌营养不良分子遗传学研究现状和对策[J]. 中华神经科杂志, 2010, 43(5):313-316.
[5] 崔思颖, 蔡奥捷, 孔祥东. 杜氏肌营养不良基因治疗研究进展[J]. 中华儿科杂志, 2017, 55(9):717-719.
[6] 黄灿, 陈珍. 腺相关病毒的研究进展与展望[J]. 生物灾害科学, 2014, 37(4):333-336.
[7] Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population:implications for gene therapy using AAV vectors[J]. Hum Gene Ther, 2010, 21(6):704-712.
[8] Wu Z, Sun J, Zhang T, et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose[J]. Mol Ther, 2008, 16(2):280-289.
[9] Koo T, Popplewell L, Athanasopoulos T, et al. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice[J]. Hum Gene Ther, 2014, 25(2):98-108.
[10] Ferreira V, Petry H, Salmon F. Immune responses to AAV-vectors, the glybera example from bench to bedside[J]. Front Immunol, 2014, 5:82.
[11] Mueller C, Chulay JD, Trapnell BC, et al. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression[J]. J Clin Invest, 2013, 123(12):5310-5318.
[12] Dupont JB. Restriction factors against recombinant adeno-associated virus vectormediated gene transfer in dystrophin-deficient muscles[J]. Curr Gene Ther, 2016, 16(3):168-183.
[13] Kodippili K, Hakim CH, Pan X, et al. Dual AAV gene therapy for duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model[J]. Hum Gene Ther, 2018, 29(3):299-311.
[14] Nance ME, Duan D. Perspective on adeno-associated virus capsid modification for duchenne muscular dystrophy gene therapy[J]. Hum Gene Ther, 2015, 26(12):786-800.
[15] Wang Z, Tapscott SJ, Chamberlain JS, et al. Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials[J]. Front Microbiol, 2011, 2:201.
[16] Hayashita-Kinoh H, Yugeta N, Okada H, et al. Intra-amniotic rAAV-mediated microdystrophin gene transfer improves canine X-linked muscular dystrophy and may induce immune tolerance[J]. Mol Ther, 2015, 23(4):627-637.
[17] George LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant[J]. N Engl J Med, 2017, 377(23):2215-2227.
[18] Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy[J]. Nat Commun, 2017, 8:16105.
[19] Dupont JB, Tournaire B, Georger C, et al. Short-lived recombinant adeno-associated virus transgene expression in dystrophic muscle is associated with oxidative damage to transgene mRNA[J]. Mol Ther Methods Clin Dev, 2015, 2:15010.
[20] Guiraud S, Chen H, Burns DT, et al. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy[J]. Exp Physiol, 2015, 100(12):1458-1467.
[21] Weir AP, Burton EA, Harrod G, et al. A-and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle[J]. J Biol Chem, 2002, 277(47):45285-45290.
[22] van Westering TL, Betts CA, Wood MJ. Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy[J]. Molecules, 2015, 20(5):8823-8855.
[23] Tinsley J, Robinson N, Davies KE. Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single-and multiple-dose administration to healthy male adult volunteers[J]. J Clin Pharmacol, 2015, 55(6):698-707.
[24] Ricotti V, Spinty S, Roper H, et al. Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single-and multiple-dose administration to pediatric patients with duchenne muscular dystrophy[J]. PLoS One, 2016, 11(4):e0152840.
[25] Guiraud S, Squire SE, Edwards B, et al. Second-generation compound for the modulation of utrophin in the therapy of DMD[J]. Hum Mol Genet, 2015, 24(15):4212-4224.
[26] Strimpakos G, Corbi N, Pisani C, et al. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice[J]. J Cell Physiol, 2014, 229(9):1283-1291.
[27] Sonnemann KJ, Heun-Johnson H, Turner AJ, et al. Functional substitution by TAT-utrophin in dystrophin-deficient mice[J]. PLoS Med, 2009, 6(5):e1000083.
[28] Call JA, Ervasti JM, Lowe DA. TAT-μUtrophin mitigates the pathophysiology of dystrophin and utrophin double-knockout mice[J]. J Appl Physiol (1985), 2011, 111(1):200-205.
[29] Peladeau C, Ahmed A, Amirouche A, et al. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles[J]. Hum Mol Genet, 2016, 25(1):24-43.
[30] Ljubicic V, Jasmin BJ. Metformin increases peroxisome proliferator-activated receptor γ Co-activator-1α and utrophin a expression in dystrophic skeletal muscle[J]. Muscle Nerve, 2015, 52(1):139-142.
[31] Wojtal D, Kemaladewi DU, Malam Z, et al. Spell checking nature:versatility of CRISPR/Cas9 for developing treatments for inherited disorders[J]. Am J Hum Genet, 2016, 98(1):90-101.
[32] Jureti? N, Diaz J, Romero F, et al. Interleukin-6 and neuregulin-1 as regulators of utrophin expression via the activation of NRG-1/ErbB signaling pathway in mdx cells[J]. Biochim Biophys Acta, 2017, 1863(3):770-780.
[33] Duan D. A new kid on the playground of CRISPR DMD therapy[J]. Hum Gene Ther Clin Dev, 2017, 28(2):62-64.
[34] Iyombe-Engembe JP, Ouellet DL, Barbeau X, et al. Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method[J]. Mol Ther Nucleic Acids, 2016, 5:e283.
[35] Gee P, Xu H, Hotta A. Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of duchenne muscular dystrophy[J]. Stem Cells Int, 2017, 2017:8765154.
[36] Ousterout DG, Kabadi AM, Thakore PI, et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy[J]. Nat Commun, 2015, 6:6244.
[37] Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells[J]. Cell Stem Cell, 2016, 18(4):533-540.
[38] Young CS, Mokhonova E, Quinonez M, et al. Creation of a novel humanized dystrophic mouse model of duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy[J]. J Neuromuscul Dis, 2017, 4(2):139-145.
[39] Lattanzi A, Duguez S, Moiani A, et al. Correction of the Exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system[J]. Mol Ther Nucleic Acids, 2017, 7:11-19.
[40] Mendell JR, Rodino-Klapac LR. Duchenne muscular dystrophy:CRISPR/Cas9 treatment[J]. Cell Res, 2016, 26(5):513-514.
[41] Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.
[42] Zaidi SS, Mahfouz MM, Mansoor S. CRISPR-Cpf1:a new tool for plant genome editing[J]. Trends Plant Sci, 2017, 22(7):550-553.
[43] Zhang Y, Long C, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice[J]. Sci Adv, 2017, 3(4):e1602814.
[44] Perrin A, Rousseau J, Tremblay JP. Increased expression of laminin subunit alpha 1 chain by dCas9-VP160[J]. Mol Ther Nucleic Acids, 2017, 6:68-79.
[45] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
[46] Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284.
[47] Wang JZ, Wu P, Shi ZM, et al. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD[J]. Brain Dev, 2017, 39(7):547-556.
[48] Kim S, Koo T, Jee HG, et al. CRISPR RNAs trigger innate immune responses in human cells[J]. Genome Res, 2018.[Epub ahead of print].
浙江省自然科学基金公益性技术应用研究计划(LGF18H160014);浙江省大学生科技创新活动计划暨新苗人才计划(2016R428030)。