
组蛋白H3K9ac乙酰化与H3K9me3甲基化修饰对小鼠心脏发育的交互调控作用
李硕, 罗孝美, 彭波辉, 杨昌键, 彭昌
中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (11) : 950-954.
组蛋白H3K9ac乙酰化与H3K9me3甲基化修饰对小鼠心脏发育的交互调控作用
Interactive regulatory effect of histone H3K9ac acetylation and histone H3K9me3 methylation on cardiomyogenesis in mice
目的 探讨组蛋白乙酰化和甲基化修饰对心脏发育的交互调控作用,为先天性心脏病的防治提供新的理论基础。方法 将24只昆明孕小鼠随机分为胚胎14.5 d(ED 14.5)组、胚胎16.5 d(ED 16.5)组、新生0.5 d(PND 0.5)组及新生7 d(PND 7)组,采集各组胎鼠及新生小鼠心脏,每组检测标本数为6。运用比色法检测心肌组织组蛋白乙酰化酶(HATs)及组蛋白甲基转移酶(HMTs)活性;Western blot法检测心肌组织组蛋白H3第9位赖氨酸乙酰化(H3K9ac)及组蛋白H3第9位赖氨酸三甲基化(H3K9me3)表达水平。结果 比色法结果表明:HATs和HMTs活性在出生前均呈现高表达,出生后均呈现低表达;且PND 0.5和PND7时小鼠心肌组织HATs活性与ED 14.5时相比,以及PND 7时小鼠心肌组织HATs活性与ED 16.5时相比差异均有统计学意义(P < 0.05);小鼠心肌组织HMTs活性在PND 7时与ED 14.5和ED 16.5时相比差异有统计学意义(P < 0.05)。Western blot结果显示:组蛋白H3K9ac和H3K9me3在出生前呈现高表达,出生后呈现低表达,且PND 0.5和PND 7时小鼠心肌组织组蛋白H3K9ac和H3K9me3分别与ED 14.5和ED 16.5时相比差异均有统计学意义(P < 0.05)。结论 在心脏发育过程中HATs、HMTs及组蛋白H3K9ac、H3K9me3呈现动态表达,提示HATs和HMTs介导的组蛋白H3K9ac乙酰化及H3K9me3甲基化修饰在心脏发育过程中可能发挥了交互调控作用。
Objective To study the interactive regulatory effect of histone acetylation and methylation on cardiomyogenesis, and to provide a theoretical basis for the prevention and treatment of congenital heart disease. Methods A total of 24 Kunming mice were randomly divided into embryo day 14.5 (ED 14.5) group, embryo day 16.5 (ED 16.5) group, postnatal day 0.5 (PND 0.5) group, and postnatal day 7 (PND 7) group, with 6 mice in each group, and the heart tissue of fetal and neonatal mice was collected. Colorimetry was used to measure the activities of histone acetylases (HATs) and histone methyltransferases (HMTs) in the myocardium. Western blot was used to measure the expression of H3K9ac and H3K9me3 in the myocardium. Results Colorimetry showed that the activities of HATs and HMTs were higher before birth and were lower after birth. There was a significant difference in the activity of HATs in the myocardium between the PND 0.5 and PND 7 groups and the ED 14.5 group (P < 0.05), as well as between the PND 7 group and the ED 16.5 group (P < 0.05). There was also a significant difference in the activity of HMTs in the myocardium between the PND 7 group and the ED 14.5 and ED 16.5 groups (P < 0.05). Western blot showed higher expression of H3K9ac and H3K9me3 before birth and lower expression of H3K9ac and H3K9me3 after birth, and there were significant differences in the expression H3K9ac and H3K9me3 in the myocardium between the PND 0.5 and PND 7 groups and the ED 14.5 and ED 16.5 groups (P < 0.05). Conclusions The dynamic expression of HATs, HMTs, H3K9ac, and H3K9me3 is observed during cardiomyogenesis, suggesting that histone H3K9ac acetylation and histone H3K9me3 methylation mediated by HATs and HMTs may play a role in interactive regulation during cardiomyogenesis.
Cardiomyogenesis / Acetylation / Methylation / Interactive regulation / Mice
[1] Zhu H. Forkhead box transcription factors in embryonic heart development and congenital heart disease[J]. Life Sci, 2016, 144:194-201.
[2] Dellborg M, Björk A, Pirouzi Fard MN, et al. High mortality and morbidity among adults with congenital heart disease and type 2 diabetes[J]. Scand Cardiovasc J, 2015, 49(6):344-350.
[3] Freud LR, Tworetzky W. Fetal interventions for congenital heart disease[J]. Curr Opin Pediatr, 2016, 28(2):156-162.
[4] Begic E, Begic Z, Jahic D, et al. Tetralogy of fallot-clinical course and treatment as a mirror of contemporary cardiology/cardiac surgery development in correction of congenital heart disease in the adults[J]. Med Arch, 2018, 72(3):224-226.
[5] Madeira M, Ranchordas S, Oliveira P, et al. Pulmonary hypertension in valvular heart disease surgery:risk and prognosis[J]. Rev Port Cir Cardiotorac Vasc, 2017, 24(3-4):117.
[6] Coppola A, Romito A, Borel C, et al. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications[J]. Stem Cell Res, 2014, 12(2):323-337.
[7] Zhao W, Liu L, Pan B, et al. Epigenetic regulation of cardiac myofibril gene expression during heart development[J]. Cardiovasc Toxicol, 2015, 15(3):203-209.
[8] 徐君, 林怡翔, 顾若漪, 等. 法洛四联症患儿组蛋白乙酰化及其酶的表达[J]. 中国当代儿科杂志, 2013, 15(10):817-821.
[9] 彭昌, 赵唯安, 张维华, 等. 姜黄素通过抑制p300/CBP下调酒精诱导的胎鼠心脏GATA4及NKX2.5过表达[J]. 临床心血管病杂志, 2015, 31(2):198-202.
[10] 彭昌, 张维华, 潘博, 等. 组蛋白乙酰化酶对心脏发育核心转录因子Mef2c的动态调控作用[J]. 中国当代儿科杂志, 2014, 16(4):418-423.
[11] Vallaster M, Vallaster CD, Wu SM. Epigenetic mechanisms in cardiac development and disease[J]. Acta Biochim Biophys Sin (Shanghai), 2012, 44(1):92-102.
[12] Zhang QJ, Liu ZP. Histone methylations in heart development, congenital and adult heart diseases[J]. Epigenomics, 2015, 7(2):321-330.
[13] Zhao W, Liu L, Pan B, et al. Epigenetic regulation of cardiac myofibril gene expression during heart development[J]. Cardiovasc Toxicol, 2015, 15(3):203-209.
[14] Ooi JY, Tuano NK, Rafehi H, et al. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes[J]. Epigenetics, 2015, 10(5):418-430.
[15] Greco CM, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure[J]. Nat Rev Cardiol, 2015, 12(8):488-497.
[16] Zhang QJ, Liu ZP. Histone methylations in heart development, congenital and adult heart diseases[J]. Epigenomics, 2015, 7(2):321-330.
[17] Chaturvedi P, Kalani A, Givvimani S, et al. Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo:an epigenetic mechanism[J]. Physiol Genomics, 2014, 46(7):245-255.
[18] 潘博, 孙慧超, 吕铁伟, 等. 酒精致小鼠胚胎心脏组蛋白H3K9高乙酰化失衡及其表突变[J]. 临床心血管病杂志, 2013, 29(5):395-398.
国家自然科学基金(81560040);贵州省科技计划项目(黔科合基础2016[1177]);遵义医学院博士启动基金项目[院字(2015)4号];遵义医学院与科技学院大学生创新训练项目(遵医科院[2015]3108)。