淋巴细胞亚群绝对计数对儿童难治性肺炎支原体肺炎的早期预测作用

李娜, 穆亚平, 陈静, 李玢

中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (6) : 511-516.

PDF(1246 KB)
HTML
PDF(1246 KB)
HTML
中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (6) : 511-516. DOI: 10.7499/j.issn.1008-8830.2019.06.003
论著·临床研究

淋巴细胞亚群绝对计数对儿童难治性肺炎支原体肺炎的早期预测作用

  • 李娜1, 穆亚平2, 陈静2, 李玢2
作者信息 +

Value of absolute counts of lymphocyte subsets in the early prediction of refractory Mycoplasma pneumoniae pneumonia in children

  • LI Na1, MU Ya-Ping2, CHEN Jing2, LI Bin2
Author information +
文章历史 +

摘要

目的探讨淋巴细胞亚群绝对计数对儿童难治性肺炎支原体肺炎(RMPP)的早期预测作用。方法对244例肺炎支原体肺炎(MPP)患儿的临床资料进行回顾性分析。比较普通MPP(166例)和RMPP患儿(58例)的临床特点以及淋巴细胞亚群、乳酸脱氢酶、C反应蛋白、降钙素原、免疫球蛋白E(IgE)等实验室指标,应用ROC曲线评估预测RMMP患者的特异性指标。结果淋巴细胞亚群CD3+、CD4+、CD19+、CD56+绝对计数以及血清LDH、CRP、IgE水平两组比较差异均有统计学意义(P < 0.05)。ROC曲线分析显示,CD3+、CD4+、CD19+绝对计数鉴别诊断RMPP和普通MMP的曲线下面积分别为0.866、0.900、0.842,其敏感性分别为86%、90%、82%,特异性分别为75%、70%、80%。结论 CD3+、CD4+、CD19+绝对计数可作为儿童RMPP的预测指标。

Abstract

Objective To study the value of absolute counts of lymphocyte subsets in the early prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) in children. Methods A retrospective analysis was performed for the clinical data of 244 children with Mycoplasma pneumoniae pneumonia (MPP). Among these children, 166 had MPP, and 58 had RMPP. The two groups were compared in terms of clinical features and laboratory markers such as lymphocyte subsets, lactate dehydrogenase, C-reactive protein, procalcitonin and immunoglobulin E (IgE). The receiver operating characteristic (ROC) curve was used to evaluate the specific indices for predicting RMMP. Results There were significant differences between the two groups in the absolute counts of CD3+, CD4+, CD19+, and CD56+ lymphocytes and the serum levels of lactate dehydrogenase, C-reactive protein, and IgE (P < 0.05). The ROC curve analysis showed that the absolute counts of CD3+, CD4+ and CD19+ lymphocytes had an area under the ROC curve (AUC) of 0.866, 0.900 and 0.842 respectively in the differential diagnosis of RMPP and MPP, with a sensitivity of 86%, 90% and 82% respectively and a specificity of 75%, 70% and 80% respectively. Conclusions The absolute counts of CD3+, CD4+ and CD19+ lymphocytes can be used to predict RMPP in children.

关键词

难治性肺炎支原体肺炎 / 淋巴细胞计数 / 儿童

Key words

Refractory Mycoplasma pneumoniae pneumonia / Lymphocyte count / Child

引用本文

导出引用
李娜, 穆亚平, 陈静, 李玢. 淋巴细胞亚群绝对计数对儿童难治性肺炎支原体肺炎的早期预测作用[J]. 中国当代儿科杂志. 2019, 21(6): 511-516 https://doi.org/10.7499/j.issn.1008-8830.2019.06.003
LI Na, MU Ya-Ping, CHEN Jing, LI Bin. Value of absolute counts of lymphocyte subsets in the early prediction of refractory Mycoplasma pneumoniae pneumonia in children[J]. Chinese Journal of Contemporary Pediatrics. 2019, 21(6): 511-516 https://doi.org/10.7499/j.issn.1008-8830.2019.06.003

参考文献

[1] Lu A, Wang C, Zhang X, et al. Lactate dehydrogenase as a biomarker for prediction of refractory Mycoplasma pneumoniae pneumonia in children[J]. Respir Care, 2015, 60(10):1469-1475.
[2] Biscardi S, Lorrot M, Marc E, et al. Mycoplasma pneumoniae and asthma in children[J]. Clin Infect Dis, 2004, 38(10):1341-1346.
[3] Dobbs NA, Odeh AN, Sun X, et al. The multifaceted role of T cell-mediated immunity in pathogenesis and resistance to Mycoplasma respiratory disease[J]. Curr Trends Immunol, 2009, 10:1-19.
[4] Chen K, Kolls JK. T cell-mediated host immune defenses in the lung[J]. Annu Rev Immunol, 2013, 31:605-633.
[5] Chiu CY, Chen CJ, Wong KS, et al. Impact of bacterial and viral coinfection on Mycoplasmal pneumonia in childhood community-acquired pneumonia[J]. J Microbiol Immunol Infect, 2015, 48(1):51-56.
[6] Parrott GL, Kinjo T, Fujita J. A compendium for Mycoplasma pneumoniae[J]. Front Microbiol, 2016, 7:513.
[7] 江载芳, 申昆玲, 沈颖. 诸福棠实用儿科学[M]. 第8版. 北京:人民卫生出版社, 2015:1280-1282.
[8] 中华医学会儿科学分会呼吸学组, 《中华儿科杂志》编辑委员会. 儿童社区获得性肺炎管理指南(2013修订)(上)[J]. 中华儿科杂志, 2013, 51(10):745-752.
[9] Saraya T, Kurai D, Nakagaki K, et al. Novel aspects on the pathogenesis of Mycoplasma pneumoniae pneumonia and therapeutic implications[J]. Front Microbiol, 2014, 5:410.
[10] Kawabe T, Jankovic D, Kawabe S, et al. Memory-phenotype CD4+ T cells spontaneously generated under steady-state conditions exert innate TH1-like effector function[J]. Sci Immunol, 2017, 2(12). pii:eaam9304.
[11] Odeh AN, Simecka JW. Regulatory CD4+CD25+ T cells dampen inflammatory disease in murine Mycoplasma pneumonia and promote IL-17 and IFN-γ responses[J]. PLoS One, 2016, 11(5):e0155648.
[12] Atkinson TP, Duffy LB, Pendley D, et al. Deficient immune response to Mycoplasma pneumoniae in childhood asthma[J]. Allergy Asthma Proc, 2009, 30(2):158-165.
[13] Saraya T, Nakata K, Nakagaki K, et al. Identification of a mechanism for lung inflammation caused by mycoplasma pneumoniae using a novel mouse model[J]. Results Immunol, 2011, 1(1):76-87.
[14] Techasaensiri C, Tagliabue C, Cagle M, et al. Variation in colonization, ADP-ribosylating and vacuolating cytotoxin, and pulmonary disease severity among Mycoplasma pneumoniae strains[J]. Am J Respir Crit Care Med, 2010, 182(6):797-804.
[15] Wang M, Wang Y, Yan Y, et al. Clinical and laboratory profiles of refractory Mycoplasma pneumoniae pneumonia in children[J]. Int J Infect Dis, 2014, 29:18-23.
[16] 中华中医药学会儿童肺炎联盟.儿童肺炎支原体肺炎中西医结合诊治专家共识(2017年制定)[J]. 中国实用儿科杂志, 2017, 32(12):881-885.
[17] Bodhankar S, Woolard MD, Sun X, et al. NK cells interfere with the generation of resistance against mycoplasma respiratory infection following nasal-pulmonary immunization[J]. J Immunol, 2009, 183(4):2622-2631.
[18] Jones HP, Tabor L, Sun X, et al. Depletion of CD8+ T cells exacerbates CD4+ Th cell-associated inflammatory lesions during murine mycoplasma respiratory disease[J]. J Immunol, 2002, 168(7):3493-3501.
[19] Gao M, Wang K, Yang M, et al. Transcriptome analysis of bronchoalveolar lavage fluid from children with Mycoplasma pneumoniae pneumonia reveals natural killer and T cell-proliferation responses[J]. Front Immunol, 2018, 9:1403.
[20] Wood PR, Hill VL, Burks ML, et al. Mycoplasma pneumoniae in children with acute and refractory asthma[J]. Ann Allergy Asthma Immunol, 2013, 110(5):328-334.
[21] Smith-Norowitz TA, Silverberg J, Kusonruksa M, et al. Asthmatic children have increased specific anti-Mycoplasma pneumoniae IgM but not IgG or IgE-values independent of history of respiratory tract infection[J]. Pediatr Infect Dis J, 2013, 32(6):599-603.
[22] Jung JA, Kita H, Yawn BP, et al. Increased risk of serious pneumococcal disease in patients with atopic conditions other than asthma[J]. J Allergy Clin Immunol, 2010, 125(1):217-221.
[23] 朱影, 王婧. 儿童难治性肺炎支原体肺炎高危因素logistic回归分析[J]. 河北医学, 2018, 24(5):760-763.
[24] 梅淑芬, 张园园, 周云连, 等. 学龄前期儿童难治性肺炎支原体肺炎临床特征及危险因素分析[J]. 浙江医学, 2018, 40(11):1202-1205.
[25] Inamura N, Miyashita N, Hasegawa S, et al. Management of refractory Mycoplasma pneumoniae pneumonia:utility of measuring serum lactate dehydrogenase level[J]. J Infect Chemother, 2014, 20(4):270-273.
[26] Miyashita N, Kawai Y, Inamura N, et al. Setting a standard for the initiation of steroid therapy in refractory or severe Mycoplasma pneumoniae pneumonia in adolescents and adults[J]. J Infect Chemother, 2015, 21(3):153-160.
[27] 中华医学会儿科学分会呼吸学组, 《中华实用儿科临床杂志》编辑委员会. 儿童肺炎支原体肺炎诊治专家共识(2015年版)[J]. 中华实用儿科临床杂志, 2015, 30(17):1304-1308.

基金

中华国际科学交流基金会课题(Z2018LLN001);辽宁省重点研发计划指导计划项目(2018020167-301)。


PDF(1246 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/