
利用CRISPR/Cas9构建甲基丙二酸血症cblC型W203X突变小鼠模型
马飞, 石聪聪, 梁普平, 李思涛, 古霞, 肖昕, 郝虎
中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (8) : 824-829.
利用CRISPR/Cas9构建甲基丙二酸血症cblC型W203X突变小鼠模型
Construction of a mouse model of cblC type methylmalonic acidemia with W203X mutation based on the CRISPR/Cas9 technology
目的 利用CRISPR/Cas9技术构建与人甲基丙二酸血症cblC型W203X突变型一致的小鼠模型。方法 通过BLAST比对人和小鼠cblC基因和蛋白序列的保守性,应用CRISPR/Cas9技术进行小鼠受精卵显微注射,获得杂合子F1代小鼠,F1代小鼠通过杂交获得W203X纯合突变型小鼠,并对纯合突变型、同窝杂合型及野生型3种类型小鼠进行血代谢产物丙酰肉碱检测。结果 人和小鼠甲基丙二酸血症cblC型的致病基因MMACHC的核苷酸和氨基酸序列高度保守。通过CRISPR/Cas9技术成功获得W203X纯合突变型小鼠,该小鼠模型在生后24 h丙酰肉碱明显升高(P < 0.001)。结论 利用CRISPR/Cas9技术成功构建了与人甲基丙二酸血症cblC型W203X突变型一致的小鼠模型。
Objective To construct a W203X-mutant mouse model of cblC type methylmalonic acidemia based on the CRISPR/Cas9 technology. Methods At first, BLAST was used to compare the conservative nature of the cblC gene and protein sequences in humans and mice, and then, the CRISPR/Cas9 technology was used for microinjection of mouse fertilized eggs to obtain heterozygous F1 mice. Hybridization was performed for these mice to obtain homozygous W203X-mutant mice. The blood level of the metabolite propionyl carnitine (C3) was measured for homozygous mutant mice, heterozygous littermates, and wild-type mice. Results The gene and protein sequences of MMACHC, the pathogenic gene for cblC type methylmalonic acidemia, were highly conserved in humans and mice. The homozygous W203X-mutant mice were successfully obtained by the CRISPR/Cas9 technology, and there was a significant increase in C3 in these mice at 24 hours after birth (P < 0.001). Conclusions A W203X-mutant mouse model of cblC type methylmalonic acidemia is successfully constructed by the CRISPR/Cas9 technology.
甲基丙二酸血症cblC型 / CRISPR/Cas9技术 / W203X突变 / 小鼠模型
CblC type methylmalonic acidemia / CRISPR/Cas9 technology / W203X mutation / Mouse model
[1] 刘怡, 刘玉鹏, 张尧, 等. 中国1003例甲基丙二酸血症的复杂临床表型、基因型及防治情况分析[J]. 中华儿科杂志, 2018, 56(6):414-420.
[2] 黄倬, 韩连书, 叶军, 等. 甲基丙二酸血症患者143例资料分析[J]. 中华内分泌代谢杂志, 2014, 30(6):490-494.
[3] 刘玉鹏, 马艳艳, 吴桐菲, 等. 早发型甲基丙二酸尿症160例新生儿期异常表现[J]. 中华儿科杂志, 2012, 50(6):410-414.
[4] Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias[J]. J Inherit Metab Dis, 2008, 31(3):350-360.
[5] Lerner-Ellis JP, Tirone JC, Pawelek PD, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type[J]. Nat Genet, 2006, 38(1):93-100.
[6] 韩连书, 王斐, 胡宇慧, 等. 甲基丙二酸血症伴同型半胱氨酸血症患儿临床及基因突变分析[J]. 中华内分泌代谢杂志, 2009, 25(4):405-408.
[7] Liu MY, Yang YL, Chang YC, et al. Mutation spectrum of MMACHC in Chinese patients with combined methylmalonic aciduria and homocystinuria[J]. J Hum Genet, 2010, 55(9):621-626.
[8] 刘玉鹏, 杨艳玲. 甲基丙二酸尿症cblC型合并同型半胱氨酸血症的临床与实验室研究进展[J]. 中华儿科杂志, 2013, 51(4):313-316.
[9] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.
[10] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
[11] Zhou X, Cui Y, Han J. Methylmalonic acidemia:current status and research priorities[J]. Intractable Rare Dis Res, 2018, 7(2):73-78.
[12] Fischer S, Huemer M, Baumgartner M, et al. Clinical presentation and outcome in a series of 88 patients with the cblC defect[J]. J Inherit Metab Dis, 2014, 37(5):831-840.
[13] Nogueira C, Marcão A, Rocha H, et al. Molecular picture of cobalamin C/D defects before and after newborn screening era[J]. J Med Screen, 2017, 24(1):6-11.
[14] Forny P, Schumann A, Mustedanagic M, et al. Novel mouse models of methylmalonic aciduria recapitulate phenotypic traits with a genetic dosage effect[J]. J Biol Chem, 2016, 291(39):20563-20573.
[15] Peters HL, Pitt JJ, Wood LR, et al. Mouse models for methylmalonic aciduria[J]. PLoS One, 2012, 7(7):e40609.
[16] Peters H, Nefedov M, Sarsero J, et al. A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality[J]. J Biol Chem, 2003, 278(52):52909-52913.
[17] Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice[J]. Nat Biotechnol, 2016, 34(3):334-338.
[18] Singh K, Evens H, Nair N, et al. Efficient in vivo liver-directed gene editing using CRISPR/Cas9[J]. Mol Ther, 2018, 26(5):1241-1254.
[19] An D, Schneller JL, Frassetto A, et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia[J]. Cell Rep, 2017, 21(12):3548-3558.
广东省省级科技计划项目(2017A020215100);天河区科技计划项目(201704KW004);中山大学高校基本科研业务费(16ykjc24)。