Abstract:Metabolomics is an emerging and popular subject in the post-genome era, and a large number of studies have been noted on the application of metabolomics in health evaluation, growth and development evaluation, disease diagnosis, and therapeutic efficacy evaluation. As a special period of life, the neonatal period is characterized by rapid cell renewing, consumption of a lot of energy and materials, and changes in metabolic pathways, all of which affect the level of metabolites. However, there is still no reference standard for metabolic level and profile in neonates. This article reviews the current status of metabolic research on neonatal growth and development and common diseases and related clinical application of metabolomics, so as to provide new ideas for nutrition guidance and evaluation, selection of therapeutic regimens, and new drug research in neonates.
Scalabre A, Jobard E, Demède D, et al. Evolution of newborns' urinary metabolomic profiles according to age and growth[J]. J Proteome Res, 2017, 16(10):3732-3740.
[2]
Lee AH, Shannon CP, Amenyogbe N, et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory[J]. Nat Commun, 2019, 10(1):1092.
[3]
Dumas ME. Metabolome 2.0:quantitative genetics and network biology of metabolic phenotypes[J]. Mol Biosyst, 2012, 8(10):2494-2502.
[4]
Matsuda R, Bi C, Anguizola J, et al. Studies of metabolite-protein interactions:a review[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 966:48-58.
[5]
Peng B, Li H, Peng XX. Functional metabolomics:from biomarker discovery to metabolome reprogramming[J]. Protein Cell, 2015, 6(9):628-637.
Gao P, Xu G. Mass-spectrometry-based microbial metabolomics:recent developments and applications[J]. Anal Bioanal Chem, 2015, 407(3):669-680.
[8]
Ryckman KK, Berberich SL, Dagle JM. Predicting gestational age using neonatal metabolic markers[J]. Am J Obstet Gynecol, 2016, 214(4):515.e1-515.e13.
[9]
Robinson O, Keski-Rahkonen P, Chatzi L, et al. Cord blood metabolic signatures of birth weight:a population-based study[J]. J Proteome Res, 2018, 17(3):1235-1247.
[10]
Dessì A, Murgia A, Agostino R, et al. Exploring the role of different neonatal nutrition regimens during the first week of life by urinary GC-MS metabolomics[J]. Int J Mol Sci, 2016, 17(2):265.
[11]
Virgiliou C, Gika HG, Witting M, et al. Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery[J]. J Proteome Res, 2017, 16(2):898-910.
[12]
Chi Y, Pei L, Chen G, et al. Metabonomic profiling of human placentas reveals different metabolic patterns among subtypes of neural tube defects[J]. J Proteome Res, 2014, 13(2):934-945.
[13]
Huang J, Mo J, Zhao G, et al. Application of the amniotic fluid metabolome to the study of fetal malformations, using Down syndrome as a specific model[J]. Mol Med Rep, 2017, 16(5):7405-7415.
[14]
Diaz SO, Pinto J, Barros AS, et al. Newborn urinary metabolic signatures of prematurity and other disorders:a case control study[J]. J Proteome Res, 2016, 15(1):311-325.
Bardanzellu F, Fanos V, Reali A. "Omics" in human colostrum and mature milk:looking to old data with new eyes[J]. Nutrients, 2017, 9(8). pii:E843.
[18]
Shoji H, Shimizu T. Effect of human breast milk on biological metabolism in infants[J]. Pediatr Int, 2019, 61(1):6-15.
[19]
Hellmuth C, Uhl O, Demmelmair H, et al. The impact of human breast milk components on the infant metabolism[J]. PLoS One, 2018, 13(6):e0197713.
[20]
Rzehak P, Hellmuth C, Uhl O, et al. Rapid growth and childhood obesity are strongly associated with lysoPC(14:0)[J]. Ann Nutr Metab, 2014, 64(3-4):294-303.
[21]
Poretti A, Blaser SI, Lequin MH, et al. Neonatal neuroimaging findings in inborn errors of metabolism[J]. J Magn Reson Imaging, 2013, 37(2):294-312.
[22]
Illsinger S, Das AM. Impact of selected inborn errors of metabolism on prenatal and neonatal development[J]. IUBMB Life, 2010, 62(6):403-413.
[23]
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis:a systematic review[J]. Lancet Respir Med, 2018, 6(3):223-230.
[24]
Fanos V, Caboni P, Corsello G, et al. Urinary 1H-NMR and GC-MS metabolomics predicts early and late onset neonatal sepsis[J]. Early Hum Dev, 2014, 90(Suppl 1):S78-S83.
[25]
Schmerler D, Neugebauer S, Ludewig K, et al. Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients[J]. J Lipid Res, 2012, 53(7):1369-1375.
[26]
Martin CR, Dasilva DA, Cluette-Brown JE, et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities[J]. J Pediatr, 2011, 159(5):743-749. e1-2.
[27]
Celik IH, Demirel G, Canpolat FE, et al. Reduced plasma citrulline levels in low birth weight infants with necrotizing enterocolitis[J]. J Clin Lab Anal, 2013, 27(4):328-332.
[28]
Richir MC, Siroen MP, van Elburg RM, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis[J]. Br J Nutr, 2007, 97(5):906-911.
[29]
Polycarpou E, Zachaki S, Tsolia M, et al. Enteral L-arginine supplementation for prevention of necrotizing enterocolitis in very low birth weight neonates:a double-blind randomized pilot study of efficacy and safety[J]. JPEN J Parenter Enteral Nutr, 2013, 37(5):617-622.
Wilcock A, Begley P, Stevens A, et al. The metabolomics of necrotising enterocolitis in preterm babies:an exploratory study[J]. J Matern Fetal Neonatal Med, 2016, 29(5):758-762.
[32]
Fanos V, Pintus MC, Lussu M, et al. Urinary metabolomics of bronchopulmonary dysplasia (BPD):preliminary data at birth suggest it is a congenital disease[J]. J Matern Fetal Neonatal Med, 2014, 27(Suppl 2):39-45.
[33]
Pintus MC, Lussu M, Dessì A, et al. Urinary 1H-NMR metabolomics in the first week of life can anticipate BPD diagnosis[J]. Oxid Med Cell Longev, 2018, 2018:7620671.
[34]
Holmström GE, Hellström A, Jakobsson PG, et al. Swedish national register for retinopathy of prematurity (SWEDROP) and the evaluation of screening in Sweden[J]. Arch Ophthalmol, 2012, 130(11):1418-1424.
[35]
Papp A, Németh I, Karg E, et al. Glutathione status in retinopathy of prematurity[J]. Free Radic Biol Med, 1999, 27(7-8):738-743.
[36]
Sarici AM, Yetik H, Akar S, et al. The association between serum homocysteine levels and retinopathy of prematurity[J]. J Int Med Res, 2012, 40(5):1912-1918.
[37]
Askenazi DJ, Feig DI, Graham NM, et al. 3-5 year longitudinal follow-up of pediatric patients after acute renal failure[J]. Kidney Int, 2006, 69(1):184-189.
Goli S, Arokiasamy P. Maternal and child mortality indicators across 187 countries of the world:converging or diverging[J]. Glob Public Health, 2014, 9(3):342-360.
[40]
Walsh BH, Broadhurst DI, Mandal R, et al. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy[J]. PLoS One, 2012, 7(12):e50520.
[41]
Denihan NM, Kirwan JA, Walsh BH, et al. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy[J]. J Cereb Blood Flow Metab, 2019, 39(1):147-162.
[42]
Ramy N, Al Sharany W, Mohamed MA, et al. Lipid peroxides in the serum of asphyxiated neonates[J]. J Perinatol, 2016, 36(10):849-852.
[43]
Sarafidis K, Efstathiou N, Begou O, et al. Urine metabolomic profile in neonates with hypoxic-ischemic encephalopathy[J]. Hippokratia, 2017, 21(2):80-84.
[44]
Wu TW, Tamrazi B, Hsu KH, et al. Cerebral lactate concentration in neonatal hypoxic-ischemic encephalopathy:in relation to time, characteristic of injury, and serum lactate concentration[J]. Front Neurol, 2018, 9:293.
[45]
Wisnowski JL, Wu TW, Reitman AJ, et al. The effects of therapeutic hypothermia on cerebral metabolism in neonates with hypoxic-ischemic encephalopathy:an in vivo 1H-MR spectroscopy study[J]. J Cereb Blood Flow Metab, 2016, 36(6):1075-1086.
[46]
Esiaba I, Angeles DM, Holden MS, et al. Urinary allantoin is elevated in severe intraventricular hemorrhage in the preterm newborn[J]. Transl Stroke Res, 2016, 7(2):97-102.
[47]
Sarafidis K, Begou O, Deda O, et al. Targeted urine metabolomics in preterm neonates with intraventricular hemorrhage[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1104:240-248.
McCarthy ME, Oltman SP, Baer RJ, et al. Newborn metabolic profile associated with hyperbilirubinemia with and without kernicterus[J]. Clin Transl Sci, 2019, 12(1):28-38.
[50]
Tataranno ML, Perrone S, Longini M, et al. Predictive role of urinary metabolic profile for abnormal MRI score in preterm neonates[J]. Dis Markers, 2018, 2018:4938194.