重型地中海贫血的移植进展

黄楚雯, 江华

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (1) : 77-81.

PDF(1330 KB)
HTML
PDF(1330 KB)
HTML
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (1) : 77-81. DOI: 10.7499/j.issn.1008-8830.2020.01.015
综述

重型地中海贫血的移植进展

  • 黄楚雯, 江华
作者信息 +

Research advances in transplantation for thalassemia major

  • HUANG Chu-Wen, JIANG Hua
Author information +
文章历史 +

摘要

地中海贫血是因调节血红蛋白的基因突变导致珠蛋白链形成障碍的遗传性血液疾病。目前异基因造血干细胞移植是公认的唯一治愈手段,其经历了预处理方案的演进,供体及移植物来源的对比选择等阶段,现生存情况已得到提高。该文回顾了地中海贫血移植的发展过程及研究进展,以期给临床提供更合适的治疗选择决策。

Abstract

Thalassemia is an inherited blood disorder caused by disordered globin chain synthesis due to mutations in the regulatory genes for hemoglobin. At present, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is recognized as the only curative method for treatment. Through the revolution of pretransplantation regimens and selection of donor and source of stem cells, patients' survival has been greatly improved. This article reviews the development of transplantation for thalassemia and related research advances, in order to provide suitable treatment options for clinical application.

关键词

地中海贫血 / 造血干细胞移植 / 儿童

Key words

Thalassemia / Hematopoietic stem cell transplantation / Child

引用本文

导出引用
黄楚雯, 江华. 重型地中海贫血的移植进展[J]. 中国当代儿科杂志. 2020, 22(1): 77-81 https://doi.org/10.7499/j.issn.1008-8830.2020.01.015
HUANG Chu-Wen, JIANG Hua. Research advances in transplantation for thalassemia major[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(1): 77-81 https://doi.org/10.7499/j.issn.1008-8830.2020.01.015

参考文献

[1] de Dreuzy E, Bhukhai K, Leboulch P, et al. Current and future alternative therapies for beta-thalassemia major[J]. Biomed J, 2016, 39(1):24-38.
[2] Angelucci E, Baronciani D. Allogeneic stem cell transplantation for thalassemia major[J]. Haematologica, 2008, 93(12):1780-1784.
[3] Lucarelli G, Polchi P, Galimberti M, et al. Marrow transplantation for thalassaemia following busulphan and cyclophosphamide[J]. Lancet, 1985, 1(8442):1355-1357.
[4] Mathews V, George B, Viswabandya A, et al. Improved clinical outcomes of high risk β thalassemia major patients undergoing a HLA matched related allogeneic stem cell transplant with a treosulfan based conditioning regimen and peripheral blood stem cell grafts[J]. PLoS One, 2013, 8(4):e61637.
[5] Mathews V, Srivastava A, Chandy M. Allogeneic stem cell transplantation for thalassemia major[J]. Hematol Oncol Clin North Am, 2014, 28(6):1187-1200.
[6] Lucarelli G, Clift RA, Galimberti M, et al. Marrow transplantation for patients with thalassemia:results in class 3 patients[J]. Blood, 1996, 87(5):2082-2088.
[7] Sodani P, Gaziev D, Polchi P, et al. New approach for bone marrow transplantation in patients with class 3 thalassemia aged younger than 17 years[J]. Blood, 2004, 104(4):1201-1203.
[8] Gaziev J, Nguyen L, Puozzo C, et al. Novel pharmacokinetic behavior of intravenous busulfan in children with thalassemia undergoing hematopoietic stem cell transplantation:a prospective evaluation of pharmacokinetic and pharmacodynamic profile with therapeutic drug monitoring[J]. Blood, 2010, 115(22):4597-4604.
[9] Mohanan E, Panetta JC, Lakshmi KM, et al. Pharmacokinetics and pharmacodynamics of treosulfan in patients with thalassemia major undergoing allogeneic hematopoietic stem cell transplantation[J]. Clin Pharmacol Ther, 2018, 104(3):575-583.
[10] Caocci G, Orofino MG, Vacca A, et al. Long-term survival of beta thalassemia major patients treated with hematopoietic stem cell transplantation compared with survival with conventional treatment[J]. Am J Hematol, 2017, 92(12):1303-1310.
[11] Choudhary D, Sharma SK, Gupta N, et al. Treosulfan-thiotepa-fludarabine based conditioning regimen for allogeneic transplantation in patients with thalassemia major:a single-center experience from north India[J]. Biol Blood Marrow Transplant, 2013, 19(3):492-495.
[12] Li C, Wu X, Feng X, et al. A novel conditioning regimen improves outcomes in β-thalassemia major patients using unrelated donor peripheral blood stem cell transplantation[J]. Blood, 2012, 120(19):3875-3881.
[13] Servais S, Menten-Dedoyart C, Beguin Y, et al. Impact of pre-transplant anti-T cell globulin (ATG) on immune recovery after myeloablative allogeneic peripheral blood stem cell transplantation[J]. PLoS One, 2015, 10(6):e0130026.
[14] Goussetis E, Efstathiou E, Paisiou A, et al. Infectious complications following allogeneic stem cell transplantation by using anti-thymocyte globulin-based myeloablative conditioning regimens in children with hemoglobinopathies[J]. Transpl Infect Dis, 2015, 17(2):201-207.
[15] Qin F, Shi L, Li Q, et al. Immune recovery after in vivo T-cell depletion myeloablative conditioning hematopoietic stem cell transplantation in severe beta-thalassemia children[J]. Eur J Haematol, 2019, 103(4):342-350.
[16] Faulkner L, Uderzo C, Khalid S, et al. ATG vs thiotepa with busulfan and cyclophosphamide in matched-related bone marrow transplantation for thalassemia[J]. Blood Adv, 2017, 1(13):792-801.
[17] Ansari SH, Parveen S, Siddiqui S, et al. Managing thalassemia in the developing world:an evidence-based approach for prevention, transfusion independency, and curative treatment with hematopoietic stem cell transplantation[J]. Blood Adv, 2018, 2(Suppl 1):42-45.
[18] Anurathapan U, Hongeng S, Pakakasama S, et al. Hematopoietic stem cell transplantation for homozygous β-thalassemia and β-thalassemia/hemoglobin E patients from haploidentical donors[J]. Bone Marrow Transplant, 2016, 51(6):813-818.
[19] Gaziev J, Isgrò A, Sodani P, et al. Optimal outcomes in young class 3 patients with thalassemia undergoing HLA-identical sibling bone marrow transplantation[J]. Transplantation, 2016, 100(4):925-932.
[20] Sun L, Wang N, Chen Y, et al. Unrelated donor peripheral blood stem cell transplantation for patients with β-thalassemia major based on a novel conditioning regimen[J]. Biol Blood Marrow Transplant, 2019, 25(8):1592-1596.
[21] John MJ, Mathew A, Philip CC, et al. Unrelated and related donor transplantation for beta-thalassemia major:a single-center experience from India[J]. Pediatr Transplant, 2018, 22(5):e13209.
[22] Li C, Mathews V, Kim S, et al. Related and unrelated donor transplantation for β-thalassemia major:results of an international survey[J]. Blood Adv, 2019, 3(17):2562-2570.
[23] Issaragrisil S, Kunacheewa C. Matched sibling donor hematopoietic stem cell transplantation for thalassemia[J]. Curr Opin Hematol, 2016, 23(6):508-514.
[24] Ghavamzadeh A, Kasaeian A, Rostami T, et al. Comparable outcomes of allogeneic peripheral blood versus bone marrow hematopoietic stem cell transplantation in major thalassemia:a multivariate long-term cohort analysis[J]. Biol Blood Marrow Transplant, 2019, 25(2):307-312.
[25] Shah SA, Shah KM, Patel KA, et al. Unrelated umbilical cord blood transplant for children with β-thalassemia major[J]. Indian J Hematol Blood Transfus, 2015, 31(1):9-13.
[26] Li XY, Sun X, Chen J, et al. Hematopoietic stem cell transplantation for children with β-thalassemia major:multicenter experience in China[J]. World J Pediatr, 2018, 14(1):92-99.
[27] Fouzia NA, Edison ES, Lakshmi KM, et al. Long-term outcome of mixed chimerism after stem cell transplantation for thalassemia major conditioned with busulfan and cyclophosphamide[J]. Bone Marrow Transplant, 2018, 53(2):169-174.
[28] Spitzer B, Giardina PJ, O'Reilly RJ, et al. Late complications of mixed chimerism following allogeneic bone marrow transplantation for thalassemia major[J]. Pediatr Blood Cancer, 2015, 62(7):1303-1304.
[29] Angelucci E. Complication free survival long-term after hemopoietic cell transplantation in thalassemia[J]. Haematologica, 2018, 103(7):1094-1096.
[30] Rahal I, Galambrun C, Bertrand Y, et al. Late effects after hematopoietic stem cell transplantation for β-thalassemia major:the French national experience[J]. Haematologica, 2018, 103(7):1143-1149.
[31] Santarone S, Natale A, Olioso P, et al. Pregnancy outcome following hematopoietic cell transplantation for thalassemia major[J]. Bone Marrow Transplant, 2017, 52(3):388-393.
[32] Matthews SJ, Picton H, Ernst E, et al. Successful pregnancy in a woman previously suffering from β-thalassemia following transplantation of ovarian tissue cryopreserved before puberty[J]. Minerva Ginecol, 2018, 70(4):432-435.
[33] Santarone S, Pepe A, Meloni A, et al. Secondary solid cancer following hematopoietic cell transplantation in patients with thalassemia major[J]. Bone Marrow Transplantation, 2018, 53(1):39-43.
[34] Yang Y, Zhang X, Yi L, et al. Naïve induced pluripotent stem cells generated from β-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9[J]. Stem Cells Transl Med, 2016, 5(2):267.
[35] Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9β-globin gene targeting in human haematopoietic stem cells[J]. Nature, 2016, 539(7629):384-389.
[36] Bak RO, Dever DP, Porteus MH. CRISPR/Cas9 genome editing in human hematopoietic stem cells[J]. Nat Protoc, 2018, 13(2):358-376.
[37] Negre O, Eggimann AV, Beuzard Y, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the β(A(T87Q))-globin gene[J]. Hum Gene Ther, 2016, 27(2):148-165.
[38] Srivastava A, Shaji RV. Cure for thalassemia major-from allogeneic hematopoietic stem cell transplantation to gene therapy[J]. Haematologica, 2017, 102(2):214-223.
[39] Li C, Psatha N, Wang H, et al. Integrating HDAd5/35++ vectors as a new platform for HSC gene therapy of hemoglobinopathies[J]. Mol Ther Methods Clin Dev, 2018, 9:142-152.
[40] Shangaris P, Loukogeorgakis SP, Subramaniam S, et al. In utero gene therapy (IUGT) using GLOBE lentiviral vector phenotypically corrects the heterozygous humanised mouse model and its progress can be monitored using MRI techniques[J]. Sci Rep, 2019, 9(1):11592.
[41] Ikawa Y, Miccio A, Magrin E, et al. Gene therapy of hemoglobinopathies:progress and future challenges[J]. Hum Mol Genet, 2019, 28(R1):R24-R30.

PDF(1330 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/