积雪草苷对高氧致新生大鼠支气管肺发育不良的保护作用及其机制研究

麦朗君, 符学兴, 何罡, 赵二侬, 薛明

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (1) : 71-76.

PDF(1901 KB)
HTML
PDF(1901 KB)
HTML
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (1) : 71-76. DOI: 10.7499/j.issn.1008-8830.2020.01.014
论著·实验研究

积雪草苷对高氧致新生大鼠支气管肺发育不良的保护作用及其机制研究

  • 麦朗君, 符学兴, 何罡, 赵二侬, 薛明
作者信息 +

Effect of asiaticoside on hyperoxia-induced bronchopulmonary dysplasia in neonatal rats and related mechanism

  • MAI Lang-Jun, FU Xue-Xing, HE Gang, ZHAO Er-Nong, XUE Ming
Author information +
文章历史 +

摘要

目的 基于小分子RNA-155(miR-155)/细胞因子信号抑制因子1(SOCS1)轴研究积雪草苷对高氧致新生大鼠支气管肺发育不良的保护作用。方法 将新生大鼠随机分为对照组、模型组、积雪草苷低剂量(10 mg/kg)组、积雪草苷中剂量(25 mg/kg)组、积雪草苷高剂量(50 mg/kg)组、布地奈德(1.5 mg/kg)组,每组12只。除对照组外的其他各组在高浓度氧中暴露14 d建立新生大鼠支气管肺发育不良模型,同时以相应浓度积雪草苷对不同剂量积雪草苷组进行灌胃,布地奈德组行布地奈德雾化治疗。采用苏木精-伊红染色检测各组大鼠肺组织发育情况,测定放射状肺泡计数(RAC)、肺泡平均截距(MLI);采用超氧化物歧化酶(SOD)及丙二醛(MDA)检测试剂盒分别检测肺组织SOD、MDA水平;采用酶联免疫吸附法检测血清中肿瘤坏死因子α(TNF-α)、白介素6(IL-6)水平;采用实时荧光定量PCR法检测各组大鼠肺组织中miR-155、SOCS1的mRNA水平;采用蛋白免疫印迹法检测各组大鼠肺组织中SOCS1蛋白的相对表达。结果 与对照组相比,模型组大鼠出现肺组织结构紊乱,肺泡融合增大,肺泡间隔不均,平均间隙增大,肺泡数量明显减少等肺发育不良症状,同时MLI、肺组织MDA水平、血清IL-6及TNF-α水平、肺组织miR-155水平均明显升高(P < 0.05),肺组织RAC、SOD水平、SOCS1 mRNA及蛋白水平均明显降低(P < 0.05)。与模型组相比,积雪草苷低、中、高剂量组、布地奈德组大鼠上述肺发育不良症状改善,MLI、肺组织MDA水平、血清IL-6及TNF-α水平、肺组织miR-155水平均降低(P < 0.05),肺组织RAC、SOD水平、SOCS1 mRNA及蛋白水平均升高(P < 0.05),且积雪草苷对肺发育不良症状及上述指标的改善程度有剂量依赖性(P < 0.05)。积雪草苷高剂量组与布地奈德组相比,上述指标差异均无统计学意义,且均达到对照组水平(P > 0.05)。结论 积雪草苷可减轻高氧导致的新生大鼠肺部炎症损伤,改善支气管肺发育不良症状,且存在剂量依赖性。其作用机制可能与下调miR-155表达、上调SOCS1表达有关。

Abstract

Objective To study the protective effect of asiaticoside against hyperoxia-induced bronchopulmonary dysplasia in neonatal rats based on the microRNA-155 (miR-155)/suppressor of cytokine signaling-1 (SOCS1) axis. Methods Neonatal rats were randomly divided into a control group, a model group, a low-dose asiaticoside group (10 mg/kg), a middle-dose asiaticoside group (25 mg/kg), a high-dose asiaticoside group (50 mg/kg), and a budesonide group (1.5 mg/kg), with 12 rats in each group. All rats except those in the control group were exposed to a high concentration of oxygen for 14 days to establish a neonatal rat model of bronchopulmonary dysplasia. The low-, middle-, and high-dose asiaticoside groups were given asiaticoside at different doses by gavage, and those in the budesonide group were given budesonide aerosol treatment. Hematoxylin and eosin staining was used to observe lung tissue development and measure radial alveolar count (RAC) and mean linear intercept (MLI). Superoxide dismutase (SOD) and malondialdehyde (MDA) detection kits were used to measure the levels of SOD and MDA in lung tissue. ELISA was used to measure the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Quantitative real-time PCR was used to measure the mRNA expression of miR-155 and SOCS1 in lung tissue. Western blotting was used to measure the protein expression of SOCS1 in lung tissue. Results Compared with the control group, the model group had the symptoms of bronchopulmonary dysplasia such as a disordered structure of lung tissue, enlargement of alveolar fusion, uneven alveolar septa, enlargement of average alveolar space, and a reduction in alveolar number. The model group also had significant increases in MLI, MDA level in lung tissue, serum levels of IL-6 and TNF-α, and miR-155 level in lung tissue (P < 0.05) and significant reductions in RAC, SOD level, and mRNA and protein expression of SOCS1 in lung tissue (P < 0.05). Compared with the model group, the low-, middle-, and high-dose asiaticoside groups and the budesonide group had significant improvement in the above symptoms of bronchopulmonary dysplasia, significant reductions in MLI, MDA level in lung tissue, serum levels of IL-6 and TNF-α, and miR-155 level in lung tissue (P < 0.05), and significant increases in RAC, SOD level, and mRNA and protein expression of SOCS1 in lung tissue (P < 0.05). Asiaticoside improved the above symptoms and indices in a dose-dependent manner. There were no significant differences in the above indices between the high-dose asiaticoside and budesonide groups (P > 0.05). Conclusions Asiaticoside can alleviate inflammation injury induced by hyperoxia in neonatal rats and improve the symptoms of bronchopulmonary dysplasia in a dose-dependent manner, possibly by down-regulating the expression of miR-155 and up-regulating the expression of SOCS1.

关键词

支气管肺发育不良 / 积雪草苷 / 小分子RNA-155 / 细胞因子信号抑制因子1 / 新生大鼠

Key words

Bronchopulmonary dysplasia / Asiaticoside / microRNA-155 / Suppressor of cytokine signaling-1 / Neonatal rats

引用本文

导出引用
麦朗君, 符学兴, 何罡, 赵二侬, 薛明. 积雪草苷对高氧致新生大鼠支气管肺发育不良的保护作用及其机制研究[J]. 中国当代儿科杂志. 2020, 22(1): 71-76 https://doi.org/10.7499/j.issn.1008-8830.2020.01.014
MAI Lang-Jun, FU Xue-Xing, HE Gang, ZHAO Er-Nong, XUE Ming. Effect of asiaticoside on hyperoxia-induced bronchopulmonary dysplasia in neonatal rats and related mechanism[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(1): 71-76 https://doi.org/10.7499/j.issn.1008-8830.2020.01.014

参考文献

[1] Davis NL. Commentary on "Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia" by Fairchild et al[J]. Pediatr Res, 2019, 85(7):927-928.
[2] Shahzad T, Radajewski S, Chao CM, et al. Pathogenesis of bronchopulmonary dysplasia:when inflammation meets organ development[J]. Mol Cell Pediatr, 2016, 3(1):23.
[3] Bhunwal S, Mukhopadhyay K, Bhattacharya S, et al. Bronchopulmonary dysplasia in preterm neonates in a level III neonatal unit in India[J]. Indian Pediatr, 2018, 55(3):211-215.
[4] Ito M, Nagano N, Arai Y, et al. Genetic ablation of Bach1 gene enhances recovery from hyperoxic lung injury in newborn mice via transient upregulation of inflammatory genes[J]. Pediatr Res, 2017, 81(6):926-931.
[5] Jobe AH, Bancalari EH. Controversies about the definition of bronchopulmonary dysplasia at 50 years[J]. Acta Paediatr, 2017, 106(5):692-693.
[6] 郭宇杰, 徐钧. 积雪草苷药理作用的研究进展[J]. 山西医药杂志, 2017, 46(15):1829-1832.
[7] 叶文静, 朱小春, 王晓冰, 等. 积雪草苷通过抑制炎症和纤维化减弱平阳霉素诱导的肺间充质纤维化[J]. 中国药理学与毒理学杂志, 2016, 30(1):29-37.
[8] Zheng X, Huang H, Liu J, et al. Propofol attenuates inflammatory response in LPS-activated microglia by regulating the miR-155/SOCS1 pathway[J]. Inflammation, 2018, 41(1):11-19.
[9] Yuan Z, Syed M, Panchal D, et al. TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(5):L426-L438.
[10] Zhang L, Xu C, Chen X, et al. SOCS-1 suppresses inflammation through inhibition of NALP3 inflammasome formation in smoke inhalation-induced acute lung injury[J]. Inflammation, 2018, 41(4):1557-1567.
[11] 尹玲玲, 叶贞志, 唐丽君, 等. 大黄对高氧致新生大鼠支气管肺发育不良的影响[J]. 中国当代儿科杂志, 2018, 20(5):410-415.
[12] Ye WJ, Zhu XC, Wang XB, et al. Asiaticoside attenuates bleomycin-induced interstitial pulmonary fibrosis[J]. Chin J Pharmacol Toxicol, 2016, 30(1):29-37.
[13] 寇晨, 韩冬, 李兆娜, 等. 肺表面活性物质联合布地奈德气管内给药对早产儿支气管肺发育不良的防治效果[J]. 中国医药, 2019, 14(1):53-57.
[14] Méndez-Abad P, Zafra-Rodríguez P, Lubián-López S, et al. NTproBNP is a useful early biomarker of bronchopulmonary dysplasia in very low birth weight infants[J]. Eur J Pediatr, 2019, 178(5):755-761.
[15] McCrary AW, Barker PCA, Torok RD, et al. Agreement of an echocardiogram-based diagnosis of pulmonary hypertension in infants at risk for bronchopulmonary dysplasia among masked reviewers[J]. J Perinatol, 2019, 39(2):248-255.
[16] Chen XQ, Wu SH, Luo YY, et al. Lipoxin A4 attenuates bronchopulmonary dysplasia via upregulation of Let-7c and downregulation of TGF-β1 signaling pathway[J]. Inflammation, 2017, 40(6):2094-2108.
[17] 刘涛, 魏海龙, 李伟, 等. 积雪草苷对TGF-β1诱导的肺泡上皮细胞增殖和Vimentin蛋白表达影响[J]. 中国免疫学杂志, 2019, 35(1):25-29.
[18] Bassler D, Plavka R, Shinwell ES, et al. Early inhaled budesonide for the prevention of bronchopulmonary dysplasia[J]. N Engl J Med, 2015, 373(16):1497-1506.
[19] Rao R, Rieder SA, Nagarkatti P, et al. Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury[J]. Infect Immun, 2014, 82(7):2971-2979.

基金

海南省卫生计生行业科研项目(17A200125)。


PDF(1901 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/