Becker/Duchenne肌营养不良患儿临床表型与基因关联性预测分析

牛焕红, 陶东英, 成胜权

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (6) : 602-607.

PDF(1556 KB)
HTML
PDF(1556 KB)
HTML
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (6) : 602-607. DOI: 10.7499/j.issn.1008-8830.1912133
论著·临床研究

Becker/Duchenne肌营养不良患儿临床表型与基因关联性预测分析

  • 牛焕红, 陶东英, 成胜权
作者信息 +

A predictive analysis of the association between clinical phenotypes and genotypes in children with Becker muscular dystrophy/Duchenne muscular dystrophy

  • NIU Huan-Hong, TAO Dong-Ying, CHENG Sheng-Quan
Author information +
文章历史 +

摘要

目的 探讨Becker/Duchenne肌营养不良(BMD/DMD)患儿的临床表型与基因型的关联性,为疾病的管理、基因治疗及产前诊断提供理论依据。方法 回顾性分析52例患儿的临床资料及基因检测结果,对52例患儿均采用多重连接探针扩增(MLPA)的方法检测DMD基因,对MLPA检测未发现基因异常的患儿采用外显子芯片捕获结合高通量测序技术(NGS)进行筛查;并对20例先证者的母亲进行了测序验证。结果 结合MLPA和NGS测序技术检测到50例患儿携带BMD/DMD致病基因,检出率为96%。其中,基因缺失36例(69%)、重复7例(13%)、微小突变7例(13%)。在43例存在基因缺失/重复的患儿中,DMD 32例,BMD 11例;37例(86%)符合阅读框架原则,其中DMD 27例(96%),BMD 10例(67%)。7例微小突变均为DMD。结论 阅读框架原则对DMD有极高预测价值,对BMD预测有限。

Abstract

Objective To study the association between clinical phenotypes and genotypes in children with Becker muscular dystrophy (BMD)/Duchenne muscular dystrophy (DMD) so as to provide a theoretical basis for disease management, gene therapy, and prenatal diagnosis. Methods A retrospective analysis was performed for the clinical data and gene detection results of 52 children with BMD/DMD. Multiplex ligation-dependent probe amplification (MLPA) was used to detect the DMD gene. The children with negative results of MLPA were further screened by exon chip capture combined with next-generation sequencing (NGS). The mothers of 20 probands were validated by sequencing. Results The pathogenic genes for BMD/DMD were detected in 50 children by MLPA and NGS, with a detection rate of 96%. Among the 52 children, 36 (69%) had gene deletion, 7 (13%) had duplication, and 7 (13%) had micromutation. Among the 43 children with deletion/duplication, 32 had DMD and 11 had BMD; 37 children (86%) met the reading frame rule, among whom 27 (96%) had DMD and 10 (67%) had BMD. All 7 children with micromutation had DMD. Conclusions The reading frame rule has an extremely high predictive value for DMD but a limited predictive value for BMD.

关键词

贝氏肌营养不良 / 杜氏肌营养不良 / 基因 / 阅读框架原则 / 临床表型 / 儿童

Key words

Becker muscular dystrophy / Duchenne muscular dystrophy / Gene / Reading frame rule / Clinical phenotype / Child

引用本文

导出引用
牛焕红, 陶东英, 成胜权. Becker/Duchenne肌营养不良患儿临床表型与基因关联性预测分析[J]. 中国当代儿科杂志. 2020, 22(6): 602-607 https://doi.org/10.7499/j.issn.1008-8830.1912133
NIU Huan-Hong, TAO Dong-Ying, CHENG Sheng-Quan. A predictive analysis of the association between clinical phenotypes and genotypes in children with Becker muscular dystrophy/Duchenne muscular dystrophy[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(6): 602-607 https://doi.org/10.7499/j.issn.1008-8830.1912133

参考文献

[1] Emery AE. The muscular dystrophies[J]. Lancet, 2002, 359(9307):687-695.
[2] Falzarano MS, ScoRon C, Passarelli C, et al. Duchenne muscular dystrophy:from diagnosis to therapy[J]. Molecules, 2015, 20(10):18168-18184.
[3] Taglia A, Petillo R, D'Ambrosio P, et al. Clinical features of patients with dystrophinopathy sharing the 45-55 exon deletion of DMD gene[J]. Acta Myol, 2015, 34(1):9-13.
[4] Chakkalakal JV, Thompson J, Parks RJ, et al. Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies[J]. FASEB J, 2005, 19(8):880-891.
[5] JI X, Zhang J, Xu Y, et al. MLPA application in clinical diagnosis of DMD/BMD in Shanghai[J]. J Clin Lab Anal, 2015, 29(5):405-411.
[6] Monaco AP, Bertelson CJ, Liechti-Gallati S, et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus[J]. Genomics, 1988, 2(1):90-95.
[7] 左启华.小儿神经系统疾病[M].第2版. 北京:人民卫生出版社, 2002:867-869.
[8] Toksoy G, Durmus H, Aghayev A, et al. Mutation spectrum of 260 dystrophinopathy patients from Turkey and important highlights for genetic counseling[J]. Neuromuscul Disord, 2019, 29(8):601-613.
[9] Wang D, Gao M, Zhang K, et al. Molecular genetics analysis of 70 Chinese families with muscular dystrophy using multiplex ligation-dependent probe amplification and next-generation sequencing[J]. Front Pharmacol, 2019, 10:814.
[10] Ma P, Zhang S, Zhang H, et al. Comprehensive genetic characteristics of dystrophinpathies in China[J]. Orphanet J Rare Dis, 2018, 13(1):109.
[11] Juan-Mateu J, Gonzalez-Quereda L, Rodriguez MJ, et al. DMD mutations in 576 dystrophinopathy families:a step forward in genotype-phenotype correlations[J]. PLoS One, 2015, 10(8):e0135189.
[12] Tomar S, Moorthy V, Sethi R, et al. Mutational spectrum of dystrophinopathies in Singapore:insights for genetic diagnosis and precision therapy[J]. Am J Med Genet C Semin Med Genet, 2019, 181(2):230-244.
[13] Cho A, Seong MW, Lim BC, et al. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center[J]. Muscle Nerve, 2017, 55(5):727-734.
[14] Deepha S, Vengalil S, Preethish-Kumar V, et al. MLPA identification of dystrophin mutations and in silico evaluation of the predicted protein in dystrophinopathy cases from India[J]. BMC Med Genet, 2017, 18(1):67.
[15] Ling C, Dai Y, Fang L, et al. Exonic rearrangements in DMD in Chinese Han individuals affected with Duchenne and Becker muscular dystrophies[J]. Hum Mutat, 2020, 41(3):668-677.
[16] Xu Y, Li Y, Song T, et al. A retrospective analysis of 237 Chinese families with Duchenne muscular dystrophy history and strategies of prenatal diagnosis[J]. J Clin Lab Anal, 2018, 32(7):e22445.
[17] Janssen B, Hartmann C, Scholz V, et al. MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene:potential and pitfalls[J]. Neurogenetics, 2005, 6(1):29-35.
[18] Zhou J, Xin J, Niu Y, et al. DMD toolkit:a tool for visualizing the mutated dystrophin protein and predicting the clinical severity in DMD[J]. BMC Bioinformatics, 2017, 18(1):87.
[19] 杨新宇, 杨树源, 王明璐, 等. 中枢神经系统肿瘤患者CSF、血清髓鞘碱蛋白测定的临床意义[J]. 天津医药, 1997, 25(10):600-603.
[20] Kerr TP, Sewry CA, Robb SA, et al. Long mutant dystrophins and variable phenotypes:evasion of nonsense-mediated decay[J]. Hum Genet, 2001, 109(4):402-407.
[21] Gualandi F, Trabanelli C, Rimessi P, et al. Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion[J]. J Med Genet, 2003, 40(8):e100.
[22] Echigoya Y, Lim KQR, Nakamura A, et al. Multiple exon skipping in the Duchenne muscular dystrophy hot spots:prospects and challenges[J]. Personalized Mecidine, 2018, 8(4):pii:E41.
[23] Draviam R, Billington L, Senchak A, et al. Confocal analysis of the dystrophin protein complex in muscular in dystrophys[J]. Muscle Nerve, 2001, 24(2):262-272.
[24] Bladen CL, Salgado D, Monges S, et al. The TREAT-NMD DMD global database:analysis of more than 7,000 Duchenne muscular dystrophy mutations[J]. Hum Mutat, 2015, 36(4):395-402.
[25] Shimizu-Motohashi Y, Miyatake S, Komaki H, et al. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy:from discovery to clinical trials[J]. Am J Transl Res, 2016, 8(6):2471-2489.
[26] Lim KR, Maruyama R, Yokota T, et al. Eteplirsen in the treatment of Duchenne muscular dystrophy[J]. Drug Des Devel Ther, 2017, 11:533-545.
[27] Watanabe N, Nagata T, Satou Y, et al. NS-065/NCNP-01:An antisense oligonucleotide for potential treatment of exon 53 skipping in Duchenne muscular dystrophy[J]. Mol Ther Nucleic Acids, 2018, 13:442-449.
[28] Yiu EM, Kornberg AJ. Duchenne muscular dystrophy[J]. J Paediatr Child Health, 2015, 51:759-764.
[29] Bermúdez-López C, Teresa BG, Angel AG, et al. Germinal mosaicism in a sample of families with Duchenne/Becker muscular dystrophy with partial deletions in the DMD gene[J]. Genet Test Mol Biomarkers, 2014, 18(2):93-97.


PDF(1556 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/