Abstract:The microbiome in neonates is affected by many factors such as mode of birth and feeding pattern, and homeostasis or disorder of microbiome is associated with various neonatal diseases. Preterm infants have a gestational age of < 37 weeks at birth, with immature development and different colonization of bacteria from full-term infants. The research on the characteristics of microbiome and their association with diseases in preterm infants can provide new ideas for the treatment of neonatal diseases. This article reviews the characteristics of intrauterine microbiome, dermal microbiome, oral microbiome, stomach microbiome, intestinal microbiome, and environmental microbiome and their association with common diseases in preterm infants.
JIA Qiong,TONG Xiao-Mei. A review on the characteristics of microbiome and their association with diseases in preterm infants[J]. CJCP, 2020, 22(11): 1240-1244.
Masi AC, Stewart CJ. The role of the preterm intestinal microbiome in sepsis and necrotising enterocolitis[J]. Early Hum Dev, 2019, 138:104854.
[2]
Underwood MA, Sohn K. The microbiota of the extremely preterm infant[J]. Clin Perinatol, 2017, 44(2):407-427.
[3]
Cong X, Henderson WA, Graf J, et al. Early life experience and gut microbiome:the brain-gut-microbiota signaling system[J]. Adv Neonatal Care, 2015, 15(5):314-323.
[4]
Schoenmakers S, Steegers-Theunissen R, Faas M. The matter of the reproductive microbiome[J]. Obstet Med, 2019, 12(3):107-115.
[5]
de Goffau MC, Lager S, Sovio U, et al. Human placenta has no microbiome but can contain potential pathogens[J]. Nature, 2019, 572(7769):329-334.
[6]
Vinturache AE, Gyamfi-Bannerman C, Hwang J, et al. Maternal microbiome-a pathway to preterm birth[J]. Semin Fetal Neonatal Med, 2016, 21(2):94-99.
[7]
Teshome A, Yitayeh A. Relationship between periodontal disease and preterm low birth weight:systematic review[J]. Pan Afr Med J, 2016, 24:215.
[8]
Ercan E, Eratalay K, Deren O, et al. Evaluation of periodontal pathogens in amniotic fluid and the role of periodontal disease in preterm birth and low birth weight[J]. Acta Odontol Scand, 2013, 71(3-4):553-559.
[9]
Cobb CM, Kelly PJ, Williams KB, et al. The oral microbiome and adverse pregnancy outcomes[J]. Int J Womens Health, 2017, 9:551-559.
[10]
Ao M, Miyauchi M, Furusho H, et al. Dental infection of Porphyromonas gingivalis induces preterm birth in mice[J]. PLoS One, 2015, 10(8):e0137249.
[11]
Olomu IN, Hecht JL, Onderdonk AO, et al. Perinatal correlates of ureaplasma urealyticum in placenta parenchyma of singleton pregnancies that end before 28 weeks of gestation[J]. Pediatrics, 2009, 123(5):1329-1336.
[12]
Costello EK, Carlisle EM, Bik EM, et al. Microbiome assembly across multiple body sites in low-birthweight infants[J]. mBio, 2013, 4(6):e00782-13.
[13]
Moles L, Gómez M, Heilig H, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life[J]. PLoS One, 2013, 8(6):e66986.
[14]
Visscher MO, Adam R, Brink S, et al. Newborn infant skin:physiology, development, and care[J]. Clin Dermatol, 2015, 33(3):271-280.
[15]
Evans NJ, Rutter N. Development of the epidermis in the newborn[J]. Biol Neonate, 1986, 49(2):74-80.
[16]
Younge NE, Araújo-Pérez F, Brandon D, et al. Early-life skin microbiota in hospitalized preterm and full-term infants[J]. Microbiome, 2018, 6(1):98.
[17]
Shimizu A, Shimizu K, Nakamura T. Non-pathogenic bacterial flora may inhibit colonization by methicillin-resistant Staphylococcus aureus in extremely low birth weight infants[J]. Neonatology, 2008, 93(3):158-161.
[18]
Pichler K, Bausenhardt B, Huhulescu S, et al. Impact and time course of Clostridium difficile colonization in very low birth weight infants[J]. Neonatology, 2018, 114(2):149-154.
[19]
Sohn K, Kalanetra KM, Mills DA, et al. Buccal administration of human colostrum:impact on the oral microbiota of premature infants[J]. J Perinatol, 2016, 36(2):106-111.
[20]
Galhardo LF, Ruivo GF, Santos FO, et al. Impact of oral care and antisepsis on the prevalence of ventilator-associated pneumonia[J]. Oral Health Prev Dent, 2020, 18(2):331-336.
[21]
Patel K, Konduru K, Patra AK, et al. Trends and determinants of gastric bacterial colonization of preterm neonates in a NICU setting[J]. PLoS One, 2015, 10(7):e0114664.
[22]
Milisavljevic V, Garg M, Vuletic I, et al. Prospective assessment of the gastroesophageal microbiome in VLBW neonates[J]. BMC Pediatr, 2013, 13:49.
[23]
Hahn A, Warnken S, Pérez-Losada M, et al. Microbial diversity within the airway microbiome in chronic pediatric lung diseases[J]. Infect Genet Evol, 2018, 63:316-325.
[24]
Groer MW, Miller EM, D'Agata A, et al. Contributors to dysbiosis in very-low-birth-weight infants[J]. J Obstet Gynecol Neonatal Nurs, 2020, 49(3):232-242.
[25]
Dogra S, Sakwinska O, Soh SE, et al. Rate of establishing the gut microbiota in infancy has consequences for future health[J]. Gut Microbes, 2015, 6(5):321-325.
[26]
Yee AL, Miller E, Dishaw LJ, et al. Longitudinal microbiome composition and stability correlate with increased weight and length of very-low-birth-weight infants[J]. mSystems, 2019, 4(1):e00229-18.
[27]
Morrow AL, Lagomarcino AJ, Schibler KR, et al. Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants[J]. Microbiome, 2013, 1(1):13.
[28]
Normann E, Fahlén A, Engstrand L, et al. Intestinal microbial profiles in extremely preterm infants with and without necrotizing enterocolitis[J]. Acta Paediatr, 2013, 102(2):129-136.
[29]
Yee WH, Soraisham AS, Shah VS, et al. Incidence and timing of presentation of necrotizing enterocolitis in preterm infants[J]. Pediatrics, 2012, 129(2):e298-e304.
[30]
McElroy SJ, Underwood MA, Sherman MP. Paneth cells and necrotizing enterocolitis:a novel hypothesis for disease pathogenesis[J]. Neonatology, 2013, 103(1):10-20.
[31]
Heida FH, Beyduz G, Bulthuis ML, et al. Paneth cells in the developing gut:when do they arise and when are they immune competent?[J]. Pediatr Res, 2016, 80(2):306-310.
[32]
Zhou Y, Shan G, Sodergren E, et al. Longitudinal analysis of the premature infant intestinal microbiome prior to necrotizing enterocolitis:a case-control study[J]. PLoS One, 2015, 10(3):e0118632.
[33]
Baranowski JR, Claud EC. Necrotizing enterocolitis and the preterm infant microbiome[J]. Adv Exp Med Biol, 2019, 1125:25-36.
[34]
Egan CE, Sodhi CP, Good M, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis[J]. J Clin Invest, 2016, 126(2):495-508.
[35]
Winter SE, Bäumler AJ. Dysbiosis in the inflamed intestine:chance favors the prepared microbe[J]. Gut Microbes, 2014, 5(1):71-73.
[36]
Tarr PI, Warner BB. Gut bacteria and late-onset neonatal bloodstream infections in preterm infants[J]. Semin Fetal Neonatal Med, 2016, 21(6):388-393.
[37]
Madan JC, Salari RC, Saxena D, et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis[J]. Arch Dis Child Fetal Neonatal Ed, 2012, 97(6):F456-F462.
[38]
Hewitt KM, Mannino FL, Gonzalez A, et al. Bacterial diversity in two Neonatal Intensive Care Units (NICUs)[J]. PLoS One, 2013, 8(1):e54703.
[39]
Cong X, Judge M, Xu W, et al. Influence of feeding type on gut microbiome development in hospitalized preterm infants[J]. Nurs Res, 2017, 66(2):123-133.
[40]
Underwood MA, Gaerlan S, De Leoz ML, et al. Human milk oligosaccharides in premature infants:absorption, excretion, and influence on the intestinal microbiota[J]. Pediatr Res, 2015, 78(6):670-677.
[41]
Lee J, Kim HS, Jung YH, et al. Oropharyngeal colostrum administration in extremely premature infants:an RCT[J]. Pediatrics, 2015, 135(2):E357-E366.
[42]
Aceti A, Gori D, Barone G, et al. Probiotics and time to achieve full enteral feeding in human milk-fed and formula-fed preterm infants:systematic review and meta-analysis[J]. Nutrients, 2016, 8(8):471.
[43]
Müller MJ, Paul T, Seeliger S. Necrotizing enterocolitis in premature infants and newborns[J]. J Neonatal Perinatal Med, 2016, 9(3):233-242.
[44]
Strenger V, Gschliesser T, Grisold A, et al. Orally administered colistin leads to colistin-resistant intestinal flora and fails to prevent faecal colonisation with extended-spectrum β-lactamase-producing enterobacteria in hospitalised newborns[J]. Int J Antimicrob Agents, 2011, 37(1):67-69.
[45]
Donskey CJ. Does improving surface cleaning and disinfection reduce health care-associated infections?[J]. Am J Infect Control, 2013, 41(5 Suppl):S12-S19.
[46]
Swan JT, Ashton CM, Bui LN, et al. Effect of chlorhexidine bathing every other day on prevention of hospital-acquired infections in the surgical ICU:a single-center, randomized controlled trial[J]. Crit Care Med, 2016, 44(10):1822-1832.