
支气管肺发育不良早产儿振幅整合脑电图的临床意义分析
Clinical significance of amplitude-integrated electroencephalography in preterm infants with bronchopulmonary dysplasia
目的 了解支气管肺发育不良(BPD)早产儿振幅整合脑电图(aEEG)的变化特点及临床意义。方法 回顾性纳入出生胎龄≤ 32+6周符合BPD诊断的早产儿156例为BPD组,选择同期住院的非BPD早产儿156例为对照组,应用早产儿aEEG评分系统比较两组患儿住院期间的aEEG结果,并按检查时间(纠正胎龄≤28+6周、29~30+6周、31~32+6周、33~34+6周、35~36+6周、37~38+6周)进行分层分析。结果 BPD组患儿仅在纠正胎龄33~34+6周的aEEG总评分低于非BPD组(P < 0.001),其中轻度BPD组在纠正胎龄33~34+6周的aEEG总评分低于对应胎龄的非BPD组患儿(P < 0.05),中度BPD组在纠正胎龄31~32+6周、33~34+6周和35~36+6周的aEEG总评分低于对应胎龄的非BPD组患儿(P < 0.05),重度BPD组除纠正胎龄≤28+6周及29~30+6周外,其余aEEG总评分均低于对应胎龄的非BPD组患儿(P < 0.05)。结论 BPD(尤其是中重度)早产儿aEEG评分低于非BPD早产儿,提示其神经系统发育可能落后于同胎龄非BPD早产儿,应重视早期神经系统评估与干预。
Objective To study the changes and clinical significance of amplitude-integrated electroencephalography (aEEG) in preterm infants with bronchopulmonary dysplasia (BPD). Methods A total of 156 preterm infants with a gestational age of ≤ 32+6 weeks who were diagnosed with BPD were enrolled as the BPD group, and 156 preterm infants without BPD who were hospitalized during the same period of time were enrolled as the control group. The aEEG scoring system for preterm infants was used to compare aEEG results between the two groups during hospitalization. A stratified analysis was conducted based on the examination time (at the corrected gestational age of ≤ 28+6 weeks, 29-30+6 weeks, 31-32+6 weeks, 33-34+6 weeks, 35-36+6 weeks, and 37-38+6 weeks). Results Compared with the non-BPD group, the BPD group had a significantly lower total aEEG score at the corrected gestational age of 33-34+6 weeks (P < 0.001). The mild BPD group had a significantly lower total aEEG score than the non-BPD group at the corrected gestational age of 33-34+6 weeks (P < 0.05); the moderate BPD group had a significantly lower total aEEG score than the non-BPD group at the corrected gestational ages of 31-32+6 weeks, 33-34+6 weeks, and 35-36+6 weeks (P < 0.05); the severe BPD group had a significantly lower total aEEG score than the non-BPD group at all corrected gestational ages except ≤ 28+6 weeks and 29-30+6 weeks (P < 0.05). Conclusions Preterm infants with BPD (especially moderate to severe BPD) have a lower aEEG score than those without BPD, suggesting that their nervous system development may lag behind that of non-BPD preterm infants with the same gestational age. Therefore, early nervous system evaluation and intervention are necessary for preterm infants with BPD.
Bronchopulmonary dysplasia / Amplitude-integrated electroencephalography / Preterm infant
[1] 张媛柯, 肖群文, 李琪, 等. 早产儿支气管肺发育不良发生率及临床危险因素分析[J]. 中国新生儿科杂志, 2016, 31(3):198-200.
[2] Schwartz ML, Vaccarino F, Chacon M, et al. Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex[J]. Semin Perinatol, 2004, 28(6):379-388.
[3] Sriram S, Schreiber MD, Msall ME, et al. Cognitive development and quality of life associated with BPD in 10-year-olds born preterm[J]. Pediatrics, 2018, 141(6):e20172719.
[4] 杨磊, 徐巍, 严超英. 早产儿颅内出血振幅整合脑电图背景模式及睡眠觉醒周期的特点[J]. 中国当代儿科杂志, 2016, 18(10):965-970.
[5] Tao JD, Mathur AM. Using amplitude-integrated EEG in neonatal intensive care[J]. J Perinatol, 2010, 30 Suppl:S73-S81.
[6] Hellström-Westas L, Rosén I, Svenningsen NW. Cerebral function monitoring during the first week of life in extremely small low birthweight (ESLBW) infants[J]. Neuropediatrics, 1991, 22(1):27-32.
[7] Thornberg E, Thiringer K. Normal pattern of the cerebral function monitor trace in term and preterm neonates[J]. Acta Paediatr Scand, 1990, 79(1):20-25.
[8] Kuhle S, Klebermass K, Olischar M, et al. Sleep-wake cycles in preterm infants below 30 weeks of gestational age. Preliminary results of a prospective amplitude-integrated EEG study[J]. Wien Klin Wochenschr, 2001, 113(7-8):219-223.
[9] Olischar M, Klebermass K, Kuhle S, et al. Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks' gestational age[J]. Pediatrics, 2004, 113(1 Pt 1):e61-e66.
[10] Burdjalov VF, Baumgart S, Spitzer AR. Cerebral function monitoring:a new scoring system for the evaluation of brain maturation in neonates[J]. Pediatrics, 2003, 112(4):855-861.
[11] Hellström-Westas L, Rosén I, de Vries LS, et al. Amplitude-integrated EEG classification and interpretation in preterm and term infants[J]. Neoreviews, 2006, 7(2):e76-e85.
[12] Zhang DD, Liu YF, Hou XL, et al. Reference values for amplitude-integrated EEGs in infants from preterm to 3.5 months of age[J]. Pediatrics, 2011, 127(5):e1280-e1287.
[13] Jobe AH, Bancalari E. Bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2001, 163(7):1723-1729.
[14] 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 4版. 北京:人民卫生出版社, 2011.
[15] Hellström-Westas L, Rosén I. Continuous brain-function monitoring:state of the art in clinical practice[J]. Semin Fetal Neonatal Med, 2006, 11(6):503-511.
[16] You J, Shamsi BH, Hao MC, et al. A study on the neurodevelopment outcomes of late preterm infants[J]. BMC Neurol, 2019, 19(1):108.
[17] Blackburn S. Central nervous system vulnerabilities in preterm infants, part I[J]. J Perinat Neonatal Nurs, 2009, 23(1):12-14.
[18] Galinsky R, Lear CA, Dean JM, et al. Complex interactions between hypoxia-ischemia and inflammation in preterm brain injury[J]. Dev Med Child Neurol, 2018, 60(2):126-133.
[19] Cheong JLY, Doyle LW. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia[J]. Semin Perinatol, 2018, 42(7):478-484.
[20] Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. An evidence-based approach[J]. Am J Respir Crit Care Med, 2019, 200(6):751-759.
[21] Pappas A, Adams-Chapman I, Shankaran S, et al. Neurodevelopmental and behavioral outcomes in extremely premature neonates with ventriculomegaly in the absence of periventricular-intraventricular hemorrhage[J]. JAMA Pediatr, 2018, 172(1):32-42.
[22] 中华医学会儿科学分会围产专业委员会. 新生儿振幅整合脑电图临床应用专家共识[J]. 中华新生儿科杂志, 2019, 34(1):3-7.
[23] Griesmaier E, Burger C, Ralser E, et al. Amplitude-integrated electroencephalography shows mild delays in electrocortical activity in preterm infants born small for gestational age[J]. Acta Paediatr, 2015, 104(7):e283-e288.
[24] 郭志梅, 刘芳, 鲍丽莎, 等. 早产儿108例振幅整合脑电图特点分析[J]. 中国实用儿科杂志, 2014, 29(4):293-296.
[25] 肖玲莉, 姚明珠, 邵肖梅. 振幅整合脑电图在早产儿脑发育中的变化规律[J]. 临床儿科杂志, 2011, 29(4):360-362.
[26] 魏红玲, 邢燕, 武慧, 等. 支气管肺发育不良早产儿婴儿期预后研究[J]. 中国当代儿科杂志, 2019, 21(7):624-628.
[27] 古健, 梁少珍, 石碧君, 等. 支气管肺发育不良早产儿生后1年内神经行为发育的临床分析[J]. 中国当代儿科杂志, 2020, 22(6):583-588.
[28] Kazibwe NJ, Veeranki PS, Smith KE. Cognitive skills in preterm infants with bronchopulmonary dysplasia at 1 year adjusted and 2 years chronological age[J]. J Matern Fetal Neonatal Med, 2020, 33(13):2148-2152.
[29] Tandircioglu UA, Guzoglu N, Gucuyener K, et al. Influence of intensive care unit enlightenment on premature infants on functional brain maturation assessed by amplitude-integrated electroencephalograph[J]. Am J Perinatol, 2019. DOI:10.1055/s-0039-1697681. Online ahead of print.
[30] Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia:executive summary of a workshop[J]. J Pediatr, 2018, 197:300-308.
[31] 许淑静, 陈国洪, 孙慧清, 等. 不同程度支气管肺发育不良早产儿神经系统发育对比研究[J]. 中华实用诊断与治疗杂志, 2019, 33(2):139-142.