
急诊科反复喘息婴幼儿需要住院并接受呼吸支持治疗的预测因素
Jefferson Antonio Buendía, Ranniery Acuña-Cordero, Carlos E Rodriguez-Martinez
中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (5) : 438-444.
急诊科反复喘息婴幼儿需要住院并接受呼吸支持治疗的预测因素
Predictors of hospitalization plus airway support among infants with recurrent wheezing in the emergency department
目的 反复喘息患者多为2岁以下的婴幼儿。在热带国家,对该人群住院期间接受呼吸支持治疗的风险的临床预测模型研究较少。该研究旨在评估就诊于哥伦比亚急诊科的反复喘息婴幼儿需要住院并接受呼吸支持治疗的临床预测因素。方法 该研究是一项回顾性队列研究,纳入了2019年1~12月期间在哥伦比亚Rionegro的两个三级中心医院就诊的所有患有2次或2次以上喘息发作的婴幼儿(年龄均小于2岁)。主要结局指标是住院加呼吸支持治疗。采用多因素logistic回归模型确定需要住院并接受呼吸支持治疗的独立预测因素。结果 共85名婴幼儿住院并接受呼吸支持治疗,其中34名(40%)予以高流量鼻导管吸氧,2名(2%)予以无创通气,6名(7%)予以机械通气,43名(51%)予以常规氧疗。多因素logistic回归模型分析显示,早产(OR=1.79,95% CI:1.04~3.10)、喂养困难(OR=2.22,95% CI:1.25~3.94)、鼻煽和/或咕噜声(OR=4.27,95% CI:2.41~7.56)和既往有1次以上喘息发作需要住院治疗(OR=3.36,95% CI:1.86~7.08)是需要住院并接受呼吸支持治疗的预测因素。该模型特异度高(99.6%),鉴别度中等,曲线下面积为0.70(95% CI:0.60~0.74)。结论 该研究表明,早产、喂养困难、鼻煽和/或呼噜声,以及有1次以上需要住院治疗的喘息发作史,是急诊科就诊的反复喘息婴幼儿需要住院并接受呼吸支持治疗的独立预测因素。然而,还需收集更多的其他热带国家的证据来验证这个结论。
Objective Most patients with recurrent wheezing are infants under 2 years of age. Clinical prediction models of the risk of receiving airway support during the hospital stay in this population have been poorly studied in tropical countries. This study aimed to evaluate the clinical predictors of hospitalization plus airway support among infants with recurrent wheezing evaluated in the emergency department in Colombia. Methods A retrospective cohort study was performed. This study included all infants with two or more wheezing episodes who were younger than two years old in two tertiary centers in Rionegro, Colombia, between January 2019 and December 2019. The primary outcome measure was hospitalization plus any airway support. A multivariable logistic regression model was used to identify factors independently associated with hospitalization plus any airway support. Results A total of 85 infants were hospitalized plus any airway support, of whom 34(40%) were treated with high flow nasal canula, 2(2%) received non-invasive ventilation, 6(7%) were mechanically ventilated, and 43 (51%) received conventional oxygen therapy. The multivariable logistic regression model showed that predictors of hospitalization plus airway support included prematurity (OR=1.79, 95%CI: 1.04-3.10), poor feeding (OR=2.22, 95%CI: 1.25-3.94), nasal flaring and/or grunting (OR=4.27, 95%CI: 2.41-7.56), and previous wheezing episodes requiring hospitalization (OR=3.36, 95%CI: 1.86-7.08). The model has a high specificity (99.6%) with acceptable discrimination and an area under the curve of 0.70(95%CI: 0.60-0.74). Conclusions The present study shows that prematurity, poor feeding, nasal flaring and/or grunting, and more than one previous episode of wheezing requiring hospitalization are independent predictors of hospitalization plus airway support in a population of infants with recurrent wheezing in the emergency department. More evidence must be collected to examine the results in other tropical countries.
Wheezing / Airway support / Risk / Predictor / Infant
[1] Kwong CG, Bacharier LB. Phenotypes of wheezing and asthma in preschool children[J]. Curr Opin Allergy Clin Immunol, 2019, 19(2):148-153.
[2] Buendía JA, Rodríguez CA. A predictive model of inappropriate use of medical tests and medications in bronchiolitis[J]. Pan Afr Med J, 2020, 37:94.
[3] Haktanir Abul M, Phipatanakul W. Severe asthma in children:evaluation and management[J]. Allergol Int, 2019, 68(2):150-157.
[4] Rampersad N, Wilkins B, Egan JR. Outcomes of paediatric critical care asthma patients[J]. J Paediatr Child Health, 2018, 54(6):633-637.
[5] Abboud PA, Roth PJ, Skiles CL, et al. Predictors of failure in infants with viral bronchiolitis treated with high-flow, highhumidity nasal cannula therapy[J]. Pediatr Crit Care Med, 2012, 13(6):e343-e349.
[6] Luo G, Nkoy FL, Gesteland PH, et al. A systematic review of predictive modeling for bronchiolitis[J]. Int J Med Inform, 2014, 83(10):691-714.
[7] Freire G, Kuppermann N, Zemek R, et al. Predicting escalated care in infants with bronchiolitis[J]. Pediatrics, 2018, 142(3):e20174253.
[8] DANE Informacion Para Todos. Proyecciones de población[EB/OL].[2020-03-03]. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-depoblacion.
[9] Asociación Colombiana de Neumología Pediátrica. Guía de práctica clínica (GPC) para el diagnóstico, atención integral y seguimiento de niños y niñas con diagnóstico de asma[EB/OL].[2020-03-03]. http://gpc.minsalud.gov.co/gpc_sites/Repositorio/Conv_500/GPC_asma/GPC_Comp_Asma.pdf.
[10] Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model[J]. BMJ, 2020, 368:m441.
[11] Papenburg J, Fontela PS, Freitas RR, et al. Inappropriate antibiotic prescribing for acute bronchiolitis in US emergency departments, 2007-2015[J]. J Pediatric Infect Dis Soc, 2019, 8(6):567-570.
[12] Greenland S. Modeling and variable selection in epidemiologic analysis[J]. Am J Public Health, 1989, 79(3):340-349.
[13] Sullivan LM, Massaro JM, D'Agostino RB Sr. Presentation of multivariate data for clinical use:the Framingham Study risk score functions[J]. Stat Med, 2004, 23(10):1631-1660.
[14] Altman DG, Bland JM. Diagnostic tests 3:receiver operating characteristic plots[J]. BMJ, 1994, 309(6948):188.
[15] Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models:a framework for traditional and novel measures[J]. Epidemiology, 2010, 21(1):128-138.
[16] Schuh S, Kwong JC, Holder L, et al. Predictors of critical care and mortality in bronchiolitis after emergency department discharge[J]. J Pediatr, 2018, 199:217-222.e1.
[17] Buendía JA, Patiño DG. Costs of respiratory syncytial virus hospitalizations in Colombia[J]. Pharmacoecon Open, 2021, 5(1):71-76.