极低/超低出生体重早产儿代谢性骨病危险因素的全国多中心调查

贺晓日, 梁灿, 俞元强, 吴佩家, 陈湘红, 陈玉君, 刘翠青, 欧阳向东, 单若冰, 潘维伟, 常艳美, 王丹, 钟晓云, 罗开菊, 杨勇晖, 董青艺, 胡劲涛, 贺鸣凤, 童笑梅, 陈平洋

中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (6) : 555-562.

PDF(1671 KB)
HTML
PDF(1671 KB)
HTML
中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (6) : 555-562. DOI: 10.7499/j.issn.1008-8830.2012055
论著·临床研究

极低/超低出生体重早产儿代谢性骨病危险因素的全国多中心调查

  • 贺晓日1, 梁灿2, 俞元强2, 吴佩家2, 陈湘红3, 陈玉君4, 刘翠青5, 欧阳向东6, 单若冰7, 潘维伟8, 常艳美8, 王丹9, 钟晓云10, 罗开菊1, 杨勇晖1, 董青艺1, 胡劲涛1, 贺鸣凤1, 童笑梅8, 陈平洋1
作者信息 +

Risk factors for metabolic bone disease of prematurity in very/extremely low birth weight infants: a multicenter investigation in China

  • HE Xiao-Ri1, LIANG Can2, YU Yuan-Qiang2, WU Pei-Jia2, CHEN Xiang-Hong3, CHEN Yu-Jun4, LIU Cui-Qing5, OU-YANG Xiang-Dong6, SHAN Ruo-Bing7, PAN Wei-Wei8, CHANG Yan-Mei8, WANG Dan9, ZHONG Xiao-Yun10, LUO Kai-Ju1, YANG Yong-Hui1, DONG Qing-Yi1, HU Jin-Tao1, HE Ming-Feng1, TONG Xiao-Mei8, CHEN Ping-Yang1
Author information +
文章历史 +

摘要

目的 分析极低/超低出生体重(very/extremely low birth weight,VLBW/ELBW)早产儿代谢性骨病(metabolic bone disease of prematurity,MBDP)的发生率及危险因素。方法 回顾性调查2013年9月1日至2016年8月31日全国多中心61 786例新生儿资料,符合纳入标准的VLBW/ELBW早产儿504例,其中诊断MBDP 108例,纳入MBDP组,其余396例纳入非MBDP组。收集两组孕母及早产儿基本资料、住院期间主要疾病、营养支持策略和其他治疗情况并进行统计学比较分析;采用多因素logistic回归分析MBDP发生的危险因素。结果 VLBW早产儿MBDP发生率为19.5%(88/452),ELBW早产儿MBDP发生率为38.5%(20/52)。极早产儿、超早产儿MBDP发生率分别为21.7%和45.5%。单因素分析结果显示,MBDP组患儿胎龄、出生体重均小于非MBDP组,住院时间更长,出院时宫外发育迟缓发生率更高(P < 0.05);MBDP组新生儿呼吸窘迫综合征、败血症、贫血、低钙血症、早产儿视网膜病变发生率较非MBDP组高(P < 0.05);MBDP组较非MBDP组平均加奶速度更慢、达全肠内喂养日龄更大、肠外营养使用时间更长(P < 0.05);MBDP组患儿枸橼酸咖啡因使用比例高于非MBDP组、促红细胞生成素使用比例低于非MBDP组(P < 0.05)。多因素logistic回归分析结果显示,胎龄 < 32周、低钙血症、出院时宫外发育迟缓、败血症是MBDP发生的危险因素(P < 0.05)。结论 低胎龄、低钙血症、出院时宫外发育迟缓、新生儿败血症可能增加VLBW/ELBW早产儿MBDP发生的风险,应加强围生期孕期保健,避免早产,提高新生儿科医师对MBDP的防治意识,对早产儿采取积极合理的营养策略和综合管理措施,以改善VLBW/ELBW早产儿的近远期临床结局。

Abstract

Objective To investigate the incidence rate and risk factors for metabolic bone disease of prematurity (MBDP) in very low birth weight/extremely low birth weight (VLBW/ELBW) infants. Methods The medical data of 61 786 neonates from multiple centers of China between September 1, 2013 and August 31, 2016 were retrospectively investigated, including 504 VLBW/ELBW preterm infants who met the inclusion criteria. Among the 504 infants, 108 infants diagnosed with MBDP were enrolled as the MBDP group and the remaining 396 infants were enrolled as the non-MBDP group. The two groups were compared in terms of general information of mothers and preterm infants, major diseases during hospitalization, nutritional support strategies, and other treatment conditions. The multivariate logistic regression analysis was used to investigate the risk factors for MBDP. Results The incidence rate of MBDP was 19.4% (88/452) in VLBW preterm infants and 38.5% (20/52) in ELBW preterm infants. The incidence rate of MBDP was 21.7% in preterm infants with a gestational age of < 32 weeks and 45.5% in those with a gestational age of < 28 weeks. The univariate analysis showed that compared with the non-MBDP group, the MBDP group had significantly lower gestational age and birth weight, a significantly longer length of hospital stay, and a significantly higher incidence rate of extrauterine growth retardation (P < 0.05). Compared with the non-MBDP group, the MBDP group had significantly higher incidence rates of neonatal sepsis, anemia, hypocalcemia, and retinopathy of prematurity (P < 0.05). The MBDP group had a significantly lower mean feeding speed, a significantly higher age when reaching total enteral feeding, and a significantly longer duration of parenteral nutrition (P < 0.05). The use rate of caffeine citrate in the MBDP group was significantly higher, but the use rate of erythropoietin was significantly lower than that in the non-MBDP group (P < 0.05). The multivariate logistic regression analysis showed that gestational age < 32 weeks, hypocalcemia, extrauterine growth retardation at discharge, and neonatal sepsis were risk factors for MBDP (P < 0.05). Conclusions A lower gestational age, hypocalcemia, extrauterine growth retardation at discharge, and neonatal sepsis may be associated an increased risk of MBDP in VLBW/ELBW preterm infants. It is necessary to strengthen perinatal healthcare, avoid premature delivery, improve the awareness of the prevention and treatment of MBDP among neonatal pediatricians, and adopt positive and reasonable nutrition strategies and comprehensive management measures for preterm infants.

关键词

早产儿代谢性骨病 / 危险因素 / 极低/超低出生体重早产儿

Key words

Metabolic bone disease of prematurity / Risk factor / Very low birth weight/extremely low birth weight preterm infant

引用本文

导出引用
贺晓日, 梁灿, 俞元强, 吴佩家, 陈湘红, 陈玉君, 刘翠青, 欧阳向东, 单若冰, 潘维伟, 常艳美, 王丹, 钟晓云, 罗开菊, 杨勇晖, 董青艺, 胡劲涛, 贺鸣凤, 童笑梅, 陈平洋. 极低/超低出生体重早产儿代谢性骨病危险因素的全国多中心调查[J]. 中国当代儿科杂志. 2021, 23(6): 555-562 https://doi.org/10.7499/j.issn.1008-8830.2012055
HE Xiao-Ri, LIANG Can, YU Yuan-Qiang, WU Pei-Jia, CHEN Xiang-Hong, CHEN Yu-Jun, LIU Cui-Qing, OU-YANG Xiang-Dong, SHAN Ruo-Bing, PAN Wei-Wei, CHANG Yan-Mei, WANG Dan, ZHONG Xiao-Yun, LUO Kai-Ju, YANG Yong-Hui, DONG Qing-Yi, HU Jin-Tao, HE Ming-Feng, TONG Xiao-Mei, CHEN Ping-Yang. Risk factors for metabolic bone disease of prematurity in very/extremely low birth weight infants: a multicenter investigation in China[J]. Chinese Journal of Contemporary Pediatrics. 2021, 23(6): 555-562 https://doi.org/10.7499/j.issn.1008-8830.2012055

参考文献

[1] Tkach EK, White AM, Dysart KC, et al. Comparison of intact parathyroid hormone, alkaline phosphatase, phosphate levels for diagnosing severe metabolic bone disease in infants with severe bronchopulmonary dysplasia[J]. Am J Perinatol, 2017, 34(12):1199-1204. DOI:10.1055/s-0037-1602419. PMID:28431438.
[2] McDevitt H, Ahmed SF. Quantitative ultrasound assessment of bone health in the neonate[J]. Neonatology, 2007, 91(1):2-11. DOI:10.1159/000096965. PMID:17344646.
[3] Chin LK, Doan J, Teoh YS, et al. Outcomes of standardised approach to metabolic bone disease of prematurity[J]. J Paediatr Child Health, 2018, 54(6):665-670. DOI:10.1111/jpc.13813. PMID:29292538.
[4] Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity:causes, recognition, prevention, treatment and long-term consequences[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(5):F560-F566. DOI:10.1136/archdischild-2018-316330. PMID:31079069.
[5] Kelly A, Kovatch KJ, Garber SJ. Metabolic bone disease screening practices among U.S. neonatologists[J]. Clin Pediatr (Phila), 2014, 53(11):1077-1083. DOI:10.1177/0009922814535661. PMID:24872339.
[6] Harrison CM, Gibson AT. Osteopenia in preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2013, 98(3):F272-F275. DOI:10.1136/archdischild-2011-301025. PMID:22556204.
[7] Doyle LW, Anderson PJ. Adult outcome of extremely preterm infants[J]. Pediatrics, 2010, 126(2):342-351. DOI:10.1542/peds.2010-0710. PMID:20679313.
[8] Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries:a systematic analysis and implications[J]. Lancet, 2012, 379(9832):2162-2172. DOI:10.1016/S0140-6736(12)60820-4. PMID:22682464.
[9] 中华医学会儿科学分会新生儿学组. 中国城市早产儿流行病学初步调查报告[J]. 中国当代儿科杂志, 2005, 7(1):25-28.
[10] 中华医学会儿科学分会新生儿学组. 中国住院新生儿流行病学调查[J]. 中国当代儿科杂志, 2009, 11(1):15-20. PMID:19149915.
[11] 朱燕. 出生早产儿流行病学特征的前瞻性多中心调查[D]. 上海:复旦大学, 2012.
[12] Viswanathan S, Khasawneh W, McNelis K, et al. Metabolic bone disease:a continued challenge in extremely low birth weight infants[J]. JPEN J Parenter Enteral Nutr, 2014, 38(8):982-990. DOI:10.1177/0148607113499590. PMID:23963689.
[13] Schulz EV, Wagner CL. History, epidemiology and prevalence of neonatal bone mineral metabolic disorders[J]. Semin Fetal Neonatal Med, 2020, 25(1):101069. DOI:10.1016/j.siny.2019.101069. PMID:31952927.
[14] 李燕, 韦秋芬, 蒙丹华, 等. 极早早产儿住院情况及结局[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(2):204-209. DOI:10.3877/cma.j.issn.1673-5250.2017.02.015.
[15] Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity - National survey of current neonatal and paediatric endocrine approaches[J]. Acta Paediatr, 2020. DOI:10.1111/apa.15654. PMID:33145793. Epub ahead of print.
[16] Moreira A, Swischuk L, Malloy M, et al. Parathyroid hormone as a marker for metabolic bone disease of prematurity[J]. J Perinatol, 2014, 34(10):787-791. DOI:10.1038/jp.2014.97. PMID:24875407.
[17] Figueras-Aloy J, Álvarez-Domínguez E, Pérez-Fernández JM, et al. Metabolic bone disease and bone mineral density in very preterm infants[J]. J Pediatr, 2014, 164(3):499-504. DOI:10.1016/j.jpeds.2013.10.089. PMID:24331689.
[18] Jensen EA, White AM, Liu PH, et al. Determinants of severe metabolic bone disease in very low-birth-weight infants with severe bronchopulmonary dysplasia admitted to a tertiary referral center[J]. Am J Perinatol, 2016, 33(1):107-113. DOI:10.1055/s-0035-1560043. PMID:26295968.
[19] Avila-Alvarez A, Urisarri A, Fuentes-Carballal J, et al. Metabolic bone disease of prematurity:risk factors and associated short-term outcomes[J]. Nutrients, 2020, 12(12):3786. DOI:10.3390/nu12123786. PMID:33321828.
[20] Chen WH, Yang CY, Chen HQ, et al. Risk factors analysis and prevention of metabolic bone disease of prematurity[J]. Medicine (Baltimore), 2018, 97(42):e12861. DOI:10.1097/MD.0000000000012861. PMID:30334994.
[21] Faienza MF, D'Amato E, Natale MP, et al. Metabolic bone disease of prematurity:diagnosis and management[J]. Front Pediatr, 2019, 7:143. DOI:10.3389/fped.2019.00143. PMID:31032241.
[22] Abrams SA. In utero physiology:role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D[J]. Am J Clin Nutr, 2007, 85(2):604S-607S. DOI:10.1093/ajcn/85.2.604S. PMID:17284763.
[23] Körnmann MN, Christmann V, Gradussen CJW, et al. Growth and bone mineralization of very preterm infants at term corrected age in relation to different nutritional intakes in the early postnatal period[J]. Nutrients, 2017, 9(12):1318. DOI:10.3390/nu9121318. PMID:29207479.
[24] Orth LE, O'Mara KL. Impact of early versus late diuretic exposure on metabolic bone disease and growth in premature neonates[J]. J Pediatr Pharmacol Ther, 2018, 23(1):26-33. DOI:10.5863/1551-6776-23.1.26. PMID:29491749.
[25] O'Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength[J]. Endocrinology, 2004, 145(4):1835-1841. DOI:10.1210/en.2003-0990. PMID:14691012.
[26] Ali E, Rockman-Greenberg C, Moffatt M, et al. Caffeine is a risk factor for osteopenia of prematurity in preterm infants:a cohort study[J]. BMC Pediatr, 2018, 18(1):9. DOI:10.1186/s12887-017-0978-6. PMID:29357829.
[27] Chin LK, Doan J, Teoh YS, et al. Outcomes of standardised approach to metabolic bone disease of prematurity[J]. J Paediatr Child Health, 2018, 54(6):665-670. DOI:10.1111/jpc.13813. PMID:29292538.
[28] 全国佝偻病防治科研协作组, 中国优生科学协会小儿营养专业委员会. 维生素D缺乏及维生素D缺乏性佝偻病防治建议[J]. 中国儿童保健杂志, 2015, 23(7):781-782.DOI:10.11852/zgetbjzz2015-23-07-35.
[29] Abrams SA, Committee on Nutrition. Calcium and vitamin D requirements of enterally fed preterm infants[J]. Pediatrics, 2013, 131(5):e1676-e1683. DOI:10.1542/peds.2013-0420. PMID:23629620.
[30] Bronsky J, Campoy C, Braegger C, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition:vitamins[J]. Clin Nutr, 2018, 37(6 Pt B):2366-2378. DOI:10.1016/j.clnu.2018.06.951. PMID:30100105.
[31] Ukarapong S, Zegarra W, Navarrete C, et al. Vitamin D status among preterm infants with cholestasis and metabolic bone disease[J]. Pediatr Res, 2019, 86(6):725-731. DOI:10.1038/s41390-019-0501-x. PMID:31330529.
[32] Schulzke SM, Kaempfen S, Trachsel D, et al. Physical activity programs for promoting bone mineralization and growth in preterm infants[J]. Cochrane Database Syst Rev, 2014(4):CD005387. DOI:10.1002/14651858.CD005387.pub2. PMID:24752440.

基金

中南大学湘雅早产儿临床大数据库系统建设(056);湖南省科技创新计划项目(2017SK50120)。


PDF(1671 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/