
早产儿有创机械通气初次撤机失败相关危险因素分析
Risk factors for the first ventilator weaning failure in preterm infants receiving invasive mechanical ventilation
目的 研究早产儿有创机械通气初次撤机失败相关危险因素及不良预后。方法 回顾性纳入北京大学第三医院新生儿重症监护室收治的生后72 h内有创机械通气的早产儿,根据初次撤机后72 h内是否需要再插管分为撤机成功组和撤机失败组,分析初次撤机失败相关危险因素及不良预后。结果 共纳入282例早产儿,其中撤机失败组43例(15.2%)。撤机失败组胎龄、出生体重均低于撤机成功组(P < 0.05),撤机失败组产房内插管率、动脉导管未闭(patent ductus arteriosus,PDA;内径≥2.5 mm)比例高于撤机成功组(P < 0.05)。撤机前应用≥2种血管活性药物(OR=2.48,95%CI:1.22~5.03)、PDA(≥2.5 mm)(OR=4.54,95%CI:2.02~10.24)为撤机失败的危险因素(P < 0.05)。撤机失败组患儿呼吸机相关性肺炎、中-重度支气管肺发育不良、败血症的发生率均高于撤机成功组(P < 0.05),撤机失败组吸氧时间、住院时间长于撤机成功组(P < 0.05)。结论 撤机前使用≥2种血管活性药物、PDA(≥2.5 mm)是撤机失败的主要危险因素,撤机失败可能与住院早产儿不良结局有关。
Objective To study the risk factors for the first ventilator weaning failure and the relationship between the weaning failure and prognosis in preterm infants receiving invasive mechanical ventilation. Methods A retrospective analysis was performed for the preterm infants who were admitted to the Neonatal Intensive Care Unit of Peking University Third Hospital and received mechanical ventilation within 72 hours after birth. According to whether reintubation was required within 72 hours after the first weaning, the infants were divided into a successful weaning group and a failed weaning group. Results A total of 282 preterm infants were enrolled, and there were 43 infants (15.2%) in the failed weaning group. Compared with the successful weaning group, the failed weaning group had significantly lower gestational age and birth weight (P < 0.05), a significantly higher rate of intubation in the delivery room (P < 0.05), and a significantly higher proportion of infants with patent ductus arteriosus (PDA; diameter ≥ 2.5 mm) (P < 0.05). Use of ≥ 2 vasoactive agents before ventilator weaning (OR=2.48, 95%CI:1.22-5.03, P < 0.05) and PDA (≥ 2.5 mm) (OR=4.54, 95%CI:2.02-10.24, P < 0.05) were risk factors for ventilator weaning failure. Compared with the successful weaning group, the failed weaning group had significantly higher incidence rates of ventilator-associated pneumonia, moderate-to-severe bronchopulmonary dysplasia, and sepsis (P < 0.05). The oxygen inhalation time and hospital stay in the failed weaning group were significantly longer than those in the successful weaning group (P < 0.05). Conclusions Use of ≥ 2 vasoactive agents before ventilator weaning and PDA (≥ 2.5 mm) are risk factors for ventilator weaning failure, and ventilator weaning failure may be associated with adverse outcomes in hospitalized preterm infants.
Invasive mechanical ventilation / Ventilator weaning failure / Preterm infant
[1] Kapnadak SG, Herndon SE, Burns SM, et al. Clinical outcomes associated with high, intermediate, and low rates of failed extubation in an intensive care unit[J]. J Crit Care, 2015, 30(3):449-454. DOI:10.1016/j.jcrc.2015.02.005. PMID:25746585.
[2] Chawla S, Natarajan G, Shankaran S, et al. Markers of successful extubation in extremely preterm infants, and morbidity after failed extubation[J]. J Pediatr, 2017, 189:113-119.e2. DOI:10.1016/j.jpeds.2017.04.050. PMID:28600154.
[3] Venkataraman ST, Khan N, Brown A. Validation of predictors of extubation success and failure in mechanically ventilated infants and children[J]. Crit Care Med, 2000, 28(8):2991-2996. DOI:10.1097/00003246-200008000-00051. PMID:10966284.
[4] Al-Hathlol K, Bin Saleem N, Khawaji M, et al. Early extubation failure in very low birth weight infants:clinical outcomes and predictive factors[J]. J Neonatal Perinatal Med, 2017, 10(2):163-169. DOI:10.3233/NPM-171647. PMID:28409751.
[5] Manley BJ, Doyle LW, Owen LS, et al. Extubating extremely preterm infants:predictors of success and outcomes following failure[J]. J Pediatr, 2016, 173:45-49. DOI:10.1016/j.jpeds.2016.02.016. PMID:26960919.
[6] Kidman AM, Manley BJ, Boland RA, et al. Predictors and outcomes of extubation failure in extremely preterm infants[J]. J Paediatr Child Health, 2021. DOI:10.1111/jpc.15356. PMID:33486799. Epub ahead of print.
[7] 何玥, 袁琳, 张沂洁, 等. 极低或超低出生体质量儿初次气管插管拔管失败的危险因素及不良预后分析[J]. 中华实用儿科临床杂志, 2020, 35(11):824-828. DOI:10.3760/cma.j.cn101070-20190514-00406.
[8] 《中华儿科杂志》编辑委员会, 中华医学会儿科学分会新生儿学组. 新生儿机械通气常规[J]. 中华儿科杂志, 2015, 53(5):327-330. DOI:10.3760/cma.j.issn.0578-1310.2015.05.003. PMID:26080660.
[9] Singh N, McNally MJ, Darnall RA. Does diaphragmatic electrical activity in preterm infants predict extubation success?[J]. Respir Care, 2018, 63(2):203-207. DOI:10.4187/respcare.05539. PMID:29184049.
[10] Soonsawad S, Swatesutipun B, Limrungsikul A, et al. Heated humidified high-flow nasal cannula for prevention of extubation failure in preterm infants[J]. Indian J Pediatr, 2017, 84(4):262-266. DOI:10.1007/s12098-016-2280-2. PMID:28054235.
[11] Amaro CM, Bello JA, Jain D, et al. Early caffeine and weaning from mechanical ventilation in preterm infants:a randomized, placebo-controlled trial[J]. J Pediatr, 2018, 196:52-57. DOI:10.1016/j.jpeds.2018.01.010. PMID:29519541.
[12] Wang SH, Liou JY, Chen CY, et al. Risk factors for extubation failure in extremely low birth weight infants[J]. Pediatr Neonatol, 2017, 58(2):145-150. DOI:10.1016/j.pedneo.2016.01.006. PMID:27349301.
[13] Jobe AH, Bancalari E. Bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2001, 163(7):1723-1729. DOI:10.1164/ajrccm.163.7.2011060. PMID:11401896.
[14] 中华医学会重症医学分会. 呼吸机相关性肺炎诊断、预防和治疗指南(2013)[J]. 中华内科杂志, 2013, 52(6):524-543. DOI:10.3760/cma.j.issn.0578-1426.2013.06.024.
[15] 中华医学会眼科学分会眼底病学组. 中国早产儿视网膜病变筛查指南(2014年)[J]. 中华眼科杂志, 2014, 50(12):933-935. DOI:10.3760/cma.j.issn.0412-4081.2014.12.017.
[16] 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京:人民卫生出版社, 2019:632-640.
[17] 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4):252-257. DOI:10.3760/cma.j.issn.0578-1310.2019.04.005. PMID:30934196.
[18] Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage:a study of infants with birth weights less than 1,500 gm[J]. J Pediatr, 1978, 92(4):529-534. DOI:10.1016/s0022-3476(78)80282-0. PMID:305471.
[19] 周丛乐. 新生儿颅脑超声诊断学[M]. 北京:北京大学医学出版社, 2007:321-324.
[20] Tracy MK, Berkelhamer SK. Bronchopulmonary dysplasia and pulmonary outcomes of prematurity[J]. Pediatr Ann, 2019, 48(4):e148-e153. DOI:10.3928/19382359-20190325-03. PMID:30986315.
[21] Shalish W, Kanbar L, Keszler M. Patterns of reintubation in extremely preterm infants:a longitudinal cohort study[J]. Pediatr Res, 2018, 83(5):969-975. DOI:10.1038/pr.2017.330. PMID:29389921.
[22] Brix N, Sellmer A, Jensen MS, et al. Predictors for an unsuccessful intubation-surfactant-extubation procedure:a cohort study[J]. BMC Pediatr, 2014, 14:155. DOI:10.1186/1471-2431-14-155. PMID:24947477.
[23] Vrancken SL, van Heijst AF, de Boode WP. Neonatal hemodynamics:from developmental physiology to comprehensive monitoring[J]. Front Pediatr, 2018, 6:87. DOI:10.3389/fped.2018.00087. PMID:29675404.
[24] Clark SJ, Yoxall CW, Subhedar NV. Right ventricular volume measurements in ventilated preterm neonates[J]. Pediatr Cardiol,2004,25(2):149-153. DOI:10.1007/s00246-003-0437-z. PMID:14708068.
[25] Alkan Özdemir S, Arun Özer E, Bakiler AR, et al. Assessment of hemodynamic changes in preterm infants with respiratory distress syndrome[J]. Anatol J Cardiol,2017,18(6):440. DOI:10.14744/AnatolJCardiol, 2017.8148. PMID:29256886.
[26] Jain D, Bancalari E. New developments in respiratory support for preterm infants[J]. Am J Perinatol, 2019, 36(S 02):S13-S17. DOI:10.1055/s-0039-1691817. PMID:31238352.
[27] 何明嫄, 林玉聪, 吴琳琳, 等. 早产儿呼吸窘迫综合征高频振荡通气后两种撤机方式的安全性研究:前瞻性随机对照试验[J]. 中国当代儿科杂志, 2021, 23(1):18-24. DOI:10.7499/j.issn.1008-8830.2010115. PMID:33476532.