极/超低出生体重儿生后早期腹部局部组织氧饱和度变化趋势的前瞻性研究

张敬华, 关瑞莲, 潘翩翩, 卢伟能, 张华岩

中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (10) : 1015-1020.

PDF(661 KB)
HTML
PDF(661 KB)
HTML
中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (10) : 1015-1020. DOI: 10.7499/j.issn.1008-8830.2105156
论著·临床研究

极/超低出生体重儿生后早期腹部局部组织氧饱和度变化趋势的前瞻性研究

  • 张敬华, 关瑞莲, 潘翩翩, 卢伟能, 张华岩
作者信息 +

Changing trend of abdominal regional oxygen saturation in very/extremely low birth weight infants in the early postnatal stage: a prospective study

  • ZHANG Jing-Hua, GUAN Rui-Lian, PAN Pian-Pian, LU Wei-Neng, ZHANG Hua-Yan
Author information +
文章历史 +

摘要

目的 探讨极/超低出生体重儿(very/extremely low birth weight infant,VLBWI/ELBWI)出生后的腹部局部组织氧饱和度(abdominal regional oxygen saturation,A-rSO2)变化趋势。 方法 选取2019年9月至2021年5月在新生儿重症监护室住院的VLBWI/ELBWI作为研究对象。利用近红外光谱技术,从出生后第1天开始每天监测A-rSO2,共监测4周。并根据出生胎龄分为较低胎龄组(<29周组)及较高胎龄组(≥29周组),对两组VLBWI/ELBWI生后4周内的A-rSO2进行比较分析。 结果 共纳入VLBWI/ELBWI 63例,其中<29周组30例,≥29周组33例。63例VLBWI/ELBWI生后2周内A-rSO2呈现波动变化:生后第1天为最低值(47.9%),后逐渐升高,第4天达最高峰(67.4%),第5~9天逐渐下降,然后再次上升,至出生2周后趋于稳定。≥29周组出生后第1周及第2周A-rSO2均高于<29周组,差异有统计学意义(P<0.05)。出生第3周及第4周两组A-rSO2均值比较差异无统计学意义(P>0.05)。 结论 VLBWI/ELBWI的A-rSO2在出生后最初2周随日龄增加存在波动变化,2周后趋于稳定;生后2周内的A-rSO2与胎龄相关。

Abstract

Objective To study the changing trend of abdominal regional oxygen saturation (A-rSO2) in very/extremely low birth weight (VLBW/ELBW) infants after birth. Methods The VLBW/ELBW infants who were admitted to the neonatal intensive care unit from September 2019 to May 2021 were enrolled as subjects. Near-infrared spectroscopy was used to monitor A-rSO2 since day 1 after birth for 4 weeks. According to gestational age, the infants were divided into a low gestational age (<29 weeks) group and a high gestational age (≥29 weeks) group. The two groups were compared in terms of A-rSO2 within 4 weeks after birth. Results A total of 63 VLBW/ELBW infants were enrolled, with 30 infants in the <29 weeks group and 33 in the ≥29 weeks group. A-rSO2 fluctuated within the first 2 weeks after birth in the 63 infants and had the lowest level of 47.9% on day 1 after birth and then gradually increased, reaching the peak level of 67.4% on day 4; it gradually decreased on days 5-9, then gradually increased, and became relatively stable 2 weeks after birth. The ≥29 weeks group had significantly higher A-rSO2 than the <29 weeks group at weeks 1 and 2 after birth (P<0.05), while there was no significant difference in A-rSO2 between the two groups at weeks 3 and 4 after birth (P>0.05). Conclusions In infants with VLBW/ELBW, A-rSO2 fluctuates within the first 2 weeks after birth and then gradually becomes stable. A-rSO2 is associated with gestational age within 2 weeks after birth.

关键词

腹部局部组织氧饱和度 / 近红外线光谱 / 极低出生体重儿 / 超低出生体重儿

Key words

Abdominal regional oxygen saturation / Near-infrared spectroscopy / Very low birth weight infant / Extremely low birth weight infant

引用本文

导出引用
张敬华, 关瑞莲, 潘翩翩, 卢伟能, 张华岩. 极/超低出生体重儿生后早期腹部局部组织氧饱和度变化趋势的前瞻性研究[J]. 中国当代儿科杂志. 2021, 23(10): 1015-1020 https://doi.org/10.7499/j.issn.1008-8830.2105156
ZHANG Jing-Hua, GUAN Rui-Lian, PAN Pian-Pian, LU Wei-Neng, ZHANG Hua-Yan. Changing trend of abdominal regional oxygen saturation in very/extremely low birth weight infants in the early postnatal stage: a prospective study[J]. Chinese Journal of Contemporary Pediatrics. 2021, 23(10): 1015-1020 https://doi.org/10.7499/j.issn.1008-8830.2105156

参考文献

1 Ni?o DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600. PMID: 27534694. PMCID: PMC5124124. DOI: 10.1038/nrgastro.2016.119.
2 Eaton S, Rees CM, Hall NJ. Current research in necrotizing enterocolitis[J]. Early Hum Dev, 2016, 97: 33-39. PMID: 26923373. DOI: 10.1016/j.earlhumdev.2016.01.013.
3 Chen Y, Chang KTE, Lian DWQ, et al. The role of ischemia in necrotizing enterocolitis[J]. J Pediatr Surg, 2016, 51(8): 1255-1261. PMID: 26850908. DOI: 10.1016/j.jpedsurg.2015.12.015.
4 Ghanayem NS, Hoffman GM. Near infrared spectroscopy as a hemodynamic monitor in critical illness[J]. Pediatr Crit Care Med, 2016, 17(8 Suppl 1): S201-S206. PMID: 27490600. DOI: 10.1097/PCC.0000000000000780.
5 Sathish N, Singh NG, Nagaraja PS, et al. Comparison between noninvasive measurement of central venous pressure using near infrared spectroscopy with an invasive central venous pressure monitoring in cardiac surgical intensive care unit[J]. Ann Card Anaesth, 2016, 19(3): 405-409. PMID: 27397443. PMCID: PMC4971967. DOI: 10.4103/0971-9784.185520.
6 Schat TE, Schurink M, van der Laan ME, et al. Near-infrared spectroscopy to predict the course of necrotizing enterocolitis[J]. PLoS One, 2016, 11(5): e0154710. PMID: 27183233. PMCID: PMC4868291. DOI: 10.1371/journal.pone.0154710.
7 van der Heide M, Hulscher JBF, Bos AF, et al. Near-infrared spectroscopy as a diagnostic tool for necrotizing enterocolitis in preterm infants[J]. Pediatr Res, 2021,90(1):148-155. PMID: 33036017. DOI: 10.1038/s41390-020-01186-8.
8 Al-Hamad S, Hackam DJ, Goldstein SD, et al. Contrast-enhanced ultrasound and near-infrared spectroscopy of the neonatal bowel: novel, bedside, noninvasive, and radiation-free imaging for early detection of necrotizing enterocolitis[J]. Am J Perinatol, 2018, 35(14): 1358-1365. PMID: 29852509. DOI: 10.1055/s-0038-1655768.
9 Eaton S, Rees CM, Hall NJ. Current research on the epidemiology, pathogenesis, and management of necrotizing enterocolitis[J]. Neonatology, 2017, 111(4): 423-430. PMID: 28538238. DOI: 10.1159/000458462.
10 Seager E, Longley C, Aladangady N, et al. Measurement of gut oxygenation in the neonatal population using near-infrared spectroscopy: a clinical tool?[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(1): 76-86. PMID: 31154420. DOI: 10.1136/archdischild-2018-316750.
11 Patel AK, Lazar DA, Burrin DG, et al. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis[J]. Pediatr Crit Care Med, 2014, 15(8): 735-741. PMID: 25068253. DOI: 10.1097/PCC.0000000000000211.
12 Cortez J, Gupta M, Amaram A, et al. Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates[J]. J Matern Fetal Neonatal Med, 2011, 24(4): 574-582. PMID: 20828232. DOI: 10.3109/14767058.2010.511335.
13 McNeill S, Gatenby JC, McElroy S, et al. Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants[J]. J Perinatol, 2011, 31(1): 51-57. PMID: 20539273. PMCID: PMC3013378. DOI: 10.1038/jp.2010.71.
14 Benitz WE, Committee on Fetus and Newborn, American Academy of Pediatrics. Patent ductus arteriosus in preterm infants[J]. Pediatrics, 2016, 137(1): e20153730. PMID: 26672023. DOI: 10.1542/peds.2015-3730.
15 王卫平, 孙锟, 常立文. 儿科学[M]. 9版. 北京: 人民卫生出版社, 2018: 323-324.
16 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京: 人民卫生出版社, 2019.
17 Ledo A, Aguar M, Nú?ez-Ramiro A, et al. Abdominal near-infrared spectroscopy detects low mesenteric perfusion early in preterm infants with hemodynamic significant ductus arteriosus[J]. Neonatology, 2017, 112(3): 238-245. PMID: 28704836. DOI: 10.1159/000475933.
18 Bailey SM, Hendricks-Munoz KD, Mally P. Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns[J]. Am J Perinatol, 2014, 31(4): 339-344. PMID: 23873114. DOI: 10.1055/s-0033-1349894.
19 Schneider A, Minnich B, Hofst?tter E, et al. Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants[J]. Acta Paediatr, 2014, 103(9): 934-938. PMID: 24847771. DOI: 10.1111/apa.12698.
20 Moore JE. Newer monitoring techniques to determine the risk of necrotizing enterocolitis[J]. Clin Perinatol, 2013, 40(1): 125-134. PMID: 23415268. DOI: 10.1016/j.clp.2012.12.004.
21 彭文玲. 近红外光谱在新生儿腹部组织氧饱和度监测的初步研究[D]. 广州: 南方医科大学, 2018.
22 Reber KM, Nankervis CA, Nowicki PT. Newborn intestinal circulation. Physiology and pathophysiology[J]. Clin Perinatol, 2002, 29(1): 23-39. PMID: 11917738. DOI: 10.1016/s0095-5108(03)00063-0.
23 Nankervis CA, Nowicki PT. Role of nitric oxide in regulation of vascular resistance in postnatal intestine[J]. Am J Physiol, 1995, 268(6 Pt 1): G949-G958. PMID: 7611416. DOI: 10.1152/ajpgi.1995.268.6.G949.
24 Nankervis CA, Nowicki PT. Role of endothelin-1 in regulation of the postnatal intestinal circulation[J]. Am J Physiol Gastrointest Liver Physiol, 2000, 278(3): G367-G375. PMID: 10712255. DOI: 10.1152/ajpgi.2000.278.3.G367.
25 Nankervis CA, Dunaway DJ, Nowicki PT. Determinants of terminal mesenteric artery resistance during the first postnatal month[J]. Am J Physiol Gastrointest Liver Physiol, 2001, 280(4): G678-G686. PMID: 11254494. DOI: 10.1152/ajpgi.2001.280.4.G678.
26 Schat TE, van Zoonen AGJF, van der Laan ME, et al. Early cerebral and intestinal oxygenation in the risk assessment of necrotizing enterocolitis in preterm infants[J]. Early Hum Dev, 2019, 131: 75-80. PMID: 30870625. DOI: 10.1016/j.earlhumdev.2019.03.001.
27 张敬华, 张炼, 梁红. 腹部近红外光谱监测与早产儿坏死性小肠结肠炎风险相关性分析[J]. 中华新生儿科杂志(中英文), 2017, 32(3): 209-212. DOI: 10.3760/cma.j.issn.2096-2932.2017.03.012.

PDF(661 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/