Abstract:In recent years, magnetic resonance imaging (MRI) has been widely used in evaluating neonatal brain development, diagnosing neonatal brain injury, and predicting neurodevelopmental prognosis. Based on current research evidence and clinical experience in China and overseas, the Neonatologist Society of Chinese Medical Doctor Association has developed a consensus on the indications and standardized clinical process of neonatal brain MRI. The consensus has the following main points. (1) Brain MRI should be performed for neonates suspected of hypoxic-ischemic encephalopathy, intracranial infection, stroke and unexplained convulsions; brain MRI is not considered a routine in the management of preterm infants, but it should be performed for further evaluation when cranial ultrasound finds evidence of brain injury; as for extremely preterm or extremely low birth weight infants without abnormal ultrasound findings, it is recommended that they should undergo MRI examination at term equivalent age once. (2) Neonates should undergo MRI examination in a non-sedated state if possible. (3) During MRI examination, vital signs should be closely monitored to ensure safety; the necessity of MRI examination should be strictly evaluated for critically ill neonates, and magnetic resonance compatible incubator and ventilator can be used. (4) At present, 1.5 T or 3.0 T equipment can be used for neonatal brain MRI examination, and the special coil for the neonatal head should be used to improve signal-to-noise ratio; routine neonatal brain MRI sequences should at least include axial T1 weighted image (T1WI), axial T2 weighted imaging (T2WI), diffusion-weighted imaging, and sagittal T1WI or T2WI. (5) It is recommended to use a structured and graded reporting system, and reports by at least two reviewers and multi-center collaboration are recommended to increase the reliability of the report.
The American College of Obstetricians and Gynecologists Women's Health Care Physicians. Executive summary: neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists' Task Force on Neonatal Encephalopathy[J]. Obstet Gynecol, 2014, 123(4): 896-901. PMID: 24785633. DOI: 10.1097/01.AOG.0000445580.65983.d2.
Ment LR, Bada HS, Barnes P, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society[J]. Neurology, 2002, 58(12): 1726-1738. PMID: 12084869. DOI: 10.1212/wnl.58.12.1726.
Barkovich AJ, Miller SP, Bartha A, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy[J]. AJNR Am J Neuroradiol, 2006, 27(3): 533-547. PMID: 16551990. PMCID: PMC7976955.
Groenendaal F, de Vries LS. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia[J]. Pediatr Res, 2017, 81(1-2): 150-155. PMID: 27673422. DOI: 10.1038/pr.2016.195.
Alderliesten T, de Vries LS, Benders MJNL , et al. MR imaging and outcome of term neonates with perinatal asphyxia: value of diffusion-weighted MR imaging and 1H MR spectroscopy[J]. Radiology, 2011, 261(1): 235-242. PMID: 21828190. DOI: 10.1148/radiol.11110213.
McKinstry RC, Miller JH, Snyder AZ, et al. A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns[J]. Neurology, 2002, 59(6): 824-833. PMID: 12297561. DOI: 10.1212/wnl.59.6.824.
Jaremko JL, Moon AS, Kumbla S. Patterns of complications of neonatal and infant meningitis on MRI by organism: a 10 year review[J]. Eur J Radiol, 2011, 80(3): 821-827. PMID: 21067879. DOI: 10.1016/j.ejrad.2010.10.017.
Kralik SF, Kukreja MK, Paldino MJ, et al. Comparison of CSF and MRI findings among neonates and infants with E coli or group B streptococcal meningitis[J]. AJNR Am J Neuroradiol, 2019, 40(8): 1413-1417. PMID: 31320464. PMCID: PMC7048479. DOI: 10.3174/ajnr.A6134.
Bajaj M, Mody S, Natarajan G. Clinical and neuroimaging findings in neonatal herpes simplex virus infection[J]. J Pediatr, 2014, 165(2): 404-407.e1. PMID: 24929330. DOI: 10.1016/j.jpeds.2014.04.046.
Sarma A, Hanzlik E, Krishnasarma R, et al. Human parechovirus meningoencephalitis: neuroimaging in the era of polymerase chain reaction-based testing[J]. AJNR Am J Neuroradiol, 2019, 40(8): 1418-1421. PMID: 31272964. PMCID: PMC7048476. DOI: 10.3174/ajnr.A6118.
Renard D, Nerrant E, Lechiche C. DWI and FLAIR imaging in herpes simplex encephalitis: a comparative and topographical analysis[J]. J Neurol, 2015, 262(9): 2101-2105. PMID: 26092520. DOI: 10.1007/s00415-015-7818-0.
Wu T, Fan XP, Wang WY, et al. Enterovirus infections are associated with white matter damage in neonates[J]. J Paediatr Child Health, 2014, 50(10): 817-822. PMID: 24910173. DOI: 10.1111/jpc.12656.
Nakamura R, Chong PF, Haraguchi K, et al. Disseminated cortical and subcortical lesions in neonatal enterovirus 71 encephalitis[J]. J Neurovirol, 2020, 26(5): 790-792. PMID: 32671810. DOI: 10.1007/s13365-020-00843-2.
Kidokoro H, de Vries LS, Ogawa C, et al. Predominant area of brain lesions in neonates with herpes simplex encephalitis[J]. J Perinatol, 2017, 37(11): 1210-1214. PMID: 28726789. DOI: 10.1038/jp.2017.114.
Ferriero DM, Fullerton HJ, Bernard TJ, et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association[J]. Stroke, 2019, 50(3): e51-e96. PMID: 30686119. DOI: 10.1161/STR.0000000000000183.
Rossor T, Arichi T, Bhate S, et al. Anticoagulation in the management of neonatal cerebral sinovenous thrombosis: a systematic review and meta-analysis[J]. Dev Med Child Neurol, 2018, 60(9): 884-891. PMID: 29675941. DOI: 10.1111/dmcn.13760.
Husson B, Hertz-Pannier L, Adamsbaum C, et al. MR angiography findings in infants with neonatal arterial ischemic stroke in the middle cerebral artery territory: a prospective study using circle of Willis MR angiography[J]. Eur J Radiol, 2016, 85(7): 1329-1335. PMID: 27235881. DOI: 10.1016/j.ejrad.2016.05.002.
De Vis JB, Petersen ET, Kersbergen KJ, et al. Evaluation of perinatal arterial ischemic stroke using noninvasive arterial spin labeling perfusion MRI[J]. Pediatr Res, 2013, 74(3): 307-313. PMID: 23797533. DOI: 10.1038/pr.2013.111.
Watson CG, Dehaes M, Gagoski BA, et al. Arterial spin labeling perfusion magnetic resonance imaging performed in acute perinatal stroke reveals hyperperfusion associated with ischemic injury[J]. Stroke, 2016, 47(6): 1514-1519. PMID: 27143277. DOI: 10.1161/STROKEAHA.115.011936.
Pressler RM, Cilio MR, Mizrahi EM, et al. The ILAE classification of seizures and the epilepsies: modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures[J]. Epilepsia, 2021, 62(3): 615-628. PMID: 33522601. DOI: 10.1111/epi.16815.
Weeke LC, Groenendaal F, Toet MC, et al. The aetiology of neonatal seizures and the diagnostic contribution of neonatal cerebral magnetic resonance imaging[J]. Dev Med Child Neurol, 2015, 57(3): 248-256. PMID: 25385195. DOI: 10.1111/dmcn.12629.
Osmond E, Billetop A, Jary S, et al. Neonatal seizures: magnetic resonance imaging adds value in the diagnosis and prediction of neurodisability[J]. Acta Paediatr, 2014, 103(8): 820-826. PMID: 24494791. DOI: 10.1111/apa.12583.
Wilmshurst JM, Gaillard WD, Vinayan KP, et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics[J]. Epilepsia, 2015, 56(8): 1185-1197. PMID: 26122601. DOI: 10.1111/epi.13057.
Mirmiran M, Barnes PD, Keller K, et al. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants[J]. Pediatrics, 2004, 114(4): 992-998. PMID: 15466096. DOI: 10.1542/peds.2003-0772-L.
Ski?ld B, Vollmer B, B?hm B, et al. Neonatal magnetic resonance imaging and outcome at age 30 months in extremely preterm infants[J]. J Pediatr, 2012, 160(4): 559-566.e1. PMID: 22056283. DOI: 10.1016/j.jpeds.2011.09.053.
Set?nen S, Haataja L, Parkkola R, et al. Predictive value of neonatal brain MRI on the neurodevelopmental outcome of preterm infants by 5 years of age[J]. Acta Paediatr, 2013, 102(5): 492-497. PMID: 23398524. DOI: 10.1111/apa.12191.
Parikh MN, Chen M, Braimah A, et al. Diffusion MRI microstructural abnormalities at term-equivalent age are associated with neurodevelopmental outcomes at 3 years of age in very preterm infants[J]. AJNR Am J Neuroradiol, 2021, 42(8): 1535-1542. PMID: 33958330. PMCID: PMC8367615. DOI: 10.3174/ajnr.A7135.
Choi YH, Lee JM, Lee JY, et al. Delayed maturation of the middle cerebellar peduncles at near-term age predicts abnormal neurodevelopment in preterm infants[J]. Neonatology, 2021, 118(1): 37-46. PMID: 33503618. PMCID: PMC8117383. DOI: 10.1159/000512921.
Albayram MS, Smith G, Tufan F, et al. Frequency, extent, and correlates of superficial siderosis and ependymal siderosis in premature infants with germinal matrix hemorrhage: an SWI study[J]. AJNR Am J Neuroradiol, 2020, 41(2): 331-337. PMID: 31919140. PMCID: PMC7015196. DOI: 10.3174/ajnr.A6371.
Filan PM, Inder TE, Anderson PJ, et al. Monitoring the neonatal brain: a survey of current practice among Australian and New Zealand neonatologists[J]. J Paediatr Child Health, 2007, 43(7/8): 557-559. PMID: 17635686. DOI: 10.1111/j.1440-1754.2007.01136.x.
Jakab A, Meuwly E, Feldmann M, et al. Left temporal plane growth predicts language development in newborns with congenital heart disease[J]. Brain, 2019, 142(5): 1270-1281. PMID: 30957841. DOI: 10.1093/brain/awz067.
Mebius MJ, Kooi EMW, Bilardo CM, et al. Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review[J]. Pediatrics, 2017, 140(1): e20164055. PMID: 28607205. DOI: 10.1542/peds.2016-4055.
Beca J, Gunn JK, Coleman L, et al. New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest[J]. Circulation, 2013, 127(9): 971-979. PMID: 23371931. DOI: 10.1161/CIRCULATIONAHA.112.001089.
Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association[J]. Circulation, 2012, 126(9): 1143-1172. PMID: 22851541. DOI: 10.1161/CIR.0b013e318265ee8a.
Polito A, Barrett CS, Wypij D, et al. Neurologic complications in neonates supported with extracorporeal membrane oxygenation. An analysis of ELSO registry data[J]. Intensive Care Med, 2013, 39(9): 1594-1601. PMID: 23749154. DOI: 10.1007/s00134-013-2985-x.
Madderom MJ, Schiller RM, Gischler SJ, et al. Growing up after critical illness: verbal, visual-spatial, and working memory problems in neonatal extracorporeal membrane oxygenation survivors[J]. Crit Care Med, 2016, 44(6): 1182-1190. PMID: 26937861. DOI: 10.1097/CCM.0000000000001626.
American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation[J]. Pediatrics, 2004, 114(1): 297-316. PMID: 15231951. DOI: 10.1542/peds.114.1.297.
Coskun A, Yikilmaz A, Kumandas S, et al. Hyperintense globus pallidus on T1-weighted MR imaging in acute kernicterus: is it common or rare?[J]. Eur Radiol, 2005, 15(6): 1263-1267. PMID: 15565320. DOI: 10.1007/s00330-004-2502-2.
Arhan E, ?ztürk Z, Serdaro?lu A, et al. Neonatal hypoglycemia: a wide range of electroclinical manifestations and seizure outcomes[J]. Eur J Paediatr Neurol, 2017, 21(5): 738-744. PMID: 28623069. DOI: 10.1016/j.ejpn.2017.05.009.
Basu SK, Ottolini K, Govindan V, et al. Early glycemic profile is associated with brain injury patterns on magnetic resonance imaging in hypoxic ischemic encephalopathy[J]. J Pediatr, 2018, 203: 137-143. PMID: 30197201. PMCID: PMC6323004. DOI: 10.1016/j.jpeds.2018.07.041.
Burns CM, Rutherford MA, Boardman JP, et al. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia[J]. Pediatrics, 2008, 122(1): 65-74. PMID: 18595988. DOI: 10.1542/peds.2007-2822.
Finnemore A, Toulmin H, Merchant N, et al. Chloral hydrate sedation for magnetic resonance imaging in newborn infants[J]. Paediatr Anaesth, 2014, 24(2): 190-195. PMID: 24387147. DOI: 10.1111/pan.12264.
Dong SZ, Zhu M, Bulas D. Techniques for minimizing sedation in pediatric MRI[J]. J Magn Reson Imaging, 2019, 50(4): 1047-1054. PMID: 30869831. DOI: 10.1002/jmri.26703.
Edwards AD, Arthurs OJ. Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives?[J]. Pediatr Radiol, 2011, 41(11): 1353-1364. PMID: 21678113. DOI: 10.1007/s00247-011-2147-7.
De Sanctis Briggs V. Magnetic resonance imaging under sedation in newborns and infants: a study of 640 cases using sevoflurane[J]. Paediatr Anaesth, 2005, 15(1): 9-15. PMID: 15649157. DOI: 10.1111/j.1460-9592.2005.01360.x.
Lei H, Chao L, Miao T, et al. Serious airway-related adverse events with sevoflurane anesthesia via facemask for magnetic resonance imaging in 7129 pediatric patients: a retrospective study[J]. Paediatr Anaesth, 2019, 29(6): 635-639. PMID: 30729614. DOI: 10.1111/pan.13601.
He L, Wang X, Zheng S. Effects of dexmedetomidine on sevoflurane requirement for 50% excellent tracheal intubation in children: a randomized, double-blind comparison[J]. Paediatr Anaesth, 2014, 24(9): 987-993. PMID: 24823715. DOI: 10.1111/pan.12430.
Lee JR, Joseph B, Hofacer RD, et al. Effect of dexmedetomidine on sevoflurane-induced neurodegeneration in neonatal rats[J]. Br J Anaesth, 2021, 126(5): 1009-1021. PMID: 33722372. DOI: 10.1016/j.bja.2021.01.033.
Coté CJ, Wilson S, American Academy of Pediatrics, et al. Guidelines for monitoring and management of pediatric patients before, during, and after sedation for diagnostic and therapeutic procedures[J]. Pediatrics, 2019, 143(6): e20191000. PMID: 31138666. DOI: 10.1542/peds.2019-1000.
Coté CJ, Zaslavsky A, Downes JJ, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy. A combined analysis[J]. Anesthesiology, 1995, 82(4): 809-822. PMID: 7717551. DOI: 10.1097/00000542-199504000-00002.
Rona Z, Klebermass K, Cardona F, et al. Comparison of neonatal MRI examinations with and without an MR-compatible incubator: advantages in examination feasibility and clinical decision-making[J]. Eur J Paediatr Neurol, 2010, 14(5): 410-417. PMID: 20471292. DOI: 10.1016/j.ejpn.2010.03.005.
Scarabino T, Popolizio T, Giannatempo GM, et al. 3.0-T morphological and angiographic brain imaging: a 5-years experience[J]. Radiol Med, 2007, 112(1): 82-96. PMID: 17310288. DOI: 10.1007/s11547-007-0123-y.
Cawley P, Few K, Greenwood R, et al. Does magnetic resonance brain scanning at 3.0 Tesla pose a hyperthermic challenge to term neonates?[J]. J Pediatr, 2016, 175: 228-230.e1. PMID: 27318382. DOI: 10.1016/j.jpeds.2016.05.014.
Dubois J, Alison M, Counsell SJ, et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. PMID: 32420684. PMCID: PMC8247362. DOI: 10.1002/jmri.27192.
Dubois J, Dehaene-Lambertz G, Kulikova S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants[J]. Neuroscience, 2014, 276: 48-71. PMID: 24378955. DOI: 10.1016/j.neuroscience.2013.12.044.
Bruno MA, Walker EA, Abujudeh HH. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction[J]. Radiographics, 2015, 35(6): 1668-1676. PMID: 26466178. DOI: 10.1148/rg.2015150023.