间充质干细胞治疗支气管肺发育不良作用机制的研究进展

谢可瑾, 董明月, 白静萱

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (1) : 108-114.

PDF(568 KB)
HTML
PDF(568 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (1) : 108-114. DOI: 10.7499/j.issn.1008-8830.2109166
综述

间充质干细胞治疗支气管肺发育不良作用机制的研究进展

  • 谢可瑾, 董明月, 白静萱
作者信息 +

Recent research on the mechanism of mesenchymal stem cells in the treatment of bronchopulmonary dysplasia

  • XIE Ke-Jin, DONG Ming-Yue, BAI Jing-Xuan
Author information +
文章历史 +

摘要

支气管肺发育不良(bronchopulmonary dysplasia,BPD)是一种因早产儿肺发育受阻和损伤而导致的慢性肺疾病,是造成早产儿呼吸衰竭的主要病因之一。合并BPD的早产儿其他并发症发生率和病死率显著高于一般早产儿。目前主要通过综合管理对BPD进行干预,包括合理的呼吸循环支持,恰当的肠内、外营养,咖啡因、糖皮质激素及肺表面活性物质等药物的应用和出院后的院外管理。近年来干细胞医学的不断进展为治疗BPD提供了新的思路。多项临床前试验已证实干细胞治疗在有效避免肺损伤的同时促进肺的生长和损伤修复。因此,该文对间充质干细胞治疗BPD的作用机制进行全面分析,以期为临床应用提供依据。

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease due to impaired pulmonary development and is one of the main causes of respiratory failure in preterm infants. Preterm infants with BPD have significantly higher complication and mortality rates than those without BPD. At present, comprehensive management is the main intervention method for BPD, including reasonable respiratory and circulatory support, appropriate enteral nutrition and parenteral nutrition, application of caffeine/glucocorticoids/surfactants, and out-of-hospital management after discharge. The continuous advances in stem cell medicine in recent years provide new ideas for the treatment of BPD. Various pre-clinical trials have confirmed that stem cell therapy can effectively prevent lung injury and promote lung growth and damage repair. This article performs a comprehensive analysis of the mechanism of mesenchymal stem cells in the treatment of BPD, so as to provide a basis for clinical applications.

关键词

支气管肺发育不良 / 旁分泌 / 细胞外囊泡 / 间充质干细胞 / 早产儿

Key words

Bronchopulmonary dysplasia / Paracrine / Extracellular vesicle / Mesenchymal stem cell / Preterm infant

引用本文

导出引用
谢可瑾, 董明月, 白静萱. 间充质干细胞治疗支气管肺发育不良作用机制的研究进展[J]. 中国当代儿科杂志. 2022, 24(1): 108-114 https://doi.org/10.7499/j.issn.1008-8830.2109166
XIE Ke-Jin, DONG Ming-Yue, BAI Jing-Xuan. Recent research on the mechanism of mesenchymal stem cells in the treatment of bronchopulmonary dysplasia[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(1): 108-114 https://doi.org/10.7499/j.issn.1008-8830.2109166

参考文献

1 Arroyo R, Kingma PS. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem[J]. Respir Res, 2021, 22(1): 141. PMID: 33964929. PMCID: PMC8105703. DOI: 10.1186/s12931-021-01738-4.
2 Jensen EA. What is bronchopulmonary dysplasia and does caffeine prevent it?[J]. Semin Fetal Neonatal Med, 2020, 25(6): 101176. PMID: 33168465. DOI: 10.1016/j.siny.2020.101176.
3 Shah SS, Ohlsson A, Halliday HL, et al. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates[J]. Cochrane Database Syst Rev, 2017, 10(10): CD002058. PMID: 29041034. PMCID: PMC6485718. DOI: 10.1002/14651858.CD002058.pub3.
4 Norman M, Hallberg B, Abrahamsson T, et al. Association between year of birth and 1-year survival among extremely preterm infants in Sweden during 2004-2007 and 2014-2016[J]. JAMA, 2019, 321(12): 1188-1199. PMID: 30912837. PMCID: PMC6439685. DOI: 10.1001/jama.2019.2021.
5 Muehlbacher T, Bassler D, Bryant MB. Evidence for the management of bronchopulmonary dysplasia in very preterm infants[J]. Children (Basel), 2021, 8(4): 298. PMID: 33924638. PMCID: PMC8069828. DOI: 10.3390/children8040298.
6 Rysavy MA, Horbar JD, Bell EF, et al. Assessment of an updated neonatal research network extremely preterm birth outcome model in the Vermont Oxford Network[J]. JAMA Pediatr, 2020, 174(5): e196294. PMID: 32119065. PMCID: PMC7052789. DOI: 10.1001/jamapediatrics.2019.6294.
7 Lignelli E, Palumbo F, Myti D, et al. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 317(6): L832-L887. PMID: 31596603. DOI: 10.1152/ajplung.00369.2019.
8 Bancalari E, Jain D. Bronchopulmonary dysplasia: 50 years after the original description[J]. Neonatology, 2019, 115(4): 384-391. PMID: 30974430. DOI: 10.1159/000497422.
9 Shin SH, Shin SH, Kim SH, et al. The association of pregnancy-induced hypertension with bronchopulmonary dysplasia—a retrospective study based on the Korean Neonatal Network database[J]. Sci Rep, 2020, 10(1): 5600. PMID: 32221404. PMCID: PMC7101434. DOI: 10.1038/s41598-020-62595-7.
10 González-Luis GE, van Westering-Kroon E, Villamor-Martinez E, et al. Tobacco smoking during pregnancy is associated with increased risk of moderate/severe bronchopulmonary dysplasia: a systematic review and meta-analysis[J]. Front Pediatr, 2020, 8: 160. PMID: 32411634. PMCID: PMC7198744. DOI: 10.3389/fped.2020.00160.
11 Solev?g AL, Cheung PY, Schm?lzer GM. Bi-level noninvasive ventilation in neonatal respiratory distress syndrome. a systematic review and meta-analysis[J]. Neonatology, 2021, 118(3): 264-273. PMID: 33756488. DOI: 10.1159/000514637.
12 Glaser K, Gradzka-Luczewska A, Szymankiewicz-Breborowicz M, et al. Perinatal Ureaplasma exposure is associated with increased risk of late onset sepsis and imbalanced inflammation in preterm infants and may add to lung injury[J]. Front Cell Infect Microbiol, 2019, 9: 68. PMID: 31001484. PMCID: PMC6454044. DOI: 10.3389/fcimb.2019.00068.
13 Liu PC, Hung YL, Shen CM, et al. Histological chorioamnionitis and its impact on respiratory outcome in very-low-birth-weight preterm infants[J]. Pediatr Neonatol, 2021, 62(3): 258-264. PMID: 33568336. DOI: 10.1016/j.pedneo.2020.11.009.
14 Capasso L, Vento G, Loddo C, et al. Oxidative stress and bronchopulmonary dysplasia: evidences from microbiomics, metabolomics, and proteomics[J]. Front Pediatr, 2019, 7: 30. PMID: 30815432. PMCID: PMC6381008. DOI: 10.3389/fped.2019.00030.
15 Kuiper-Makris C, Selle J, Nüsken E, et al. Perinatal nutritional and metabolic pathways: early origins of chronic lung diseases[J]. Front Med (Lausanne), 2021, 8: 667315. PMID: 34211985. PMCID: PMC8239134. DOI: 10.3389/fmed.2021.667315.
16 Dai D, Chen HY, Dong XR, et al. Bronchopulmonary dysplasia predicted by developing a machine learning model of genetic and clinical information[J]. Front Genet, 2021, 12: 689071. PMID: 34276789. PMCID: PMC8283015. DOI: 10.3389/fgene.2021.689071.
17 Thébaud B, Lalu M, Renesme L, et al. Benefits and obstacles to cell therapy in neonates: the INCuBAToR (innovative neonatal cellular therapy for bronchopulmonary dysplasia: accelerating translation of research)[J]. Stem Cells Transl Med, 2021, 10(7): 968-975. PMID: 33570257. PMCID: PMC8235145. DOI: 10.1002/sctm.20-0508.
18 Han QX, Wang XC, Ding XN, et al. Immunomodulatory effects of mesenchymal stem cells on drug-induced acute kidney injury[J]. Front Immunol, 2021, 12: 683003. PMID: 34149721. PMCID: PMC8213363. DOI: 10.3389/fimmu.2021.683003.
19 Caplan AI. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5): 641-650. PMID: 1870029. DOI: 10.1002/jor.1100090504.
20 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147. PMID: 10102814. DOI: 10.1126/science.284.5411.143.
21 Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317. PMID: 16923606. DOI: 10.1080/14653240600855905.
22 Qin H, Zhao AD. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics[J]. Protein Cell, 2020, 11(10): 707-722. PMID: 32519302. PMCID: PMC7282699. DOI: 10.1007/s13238-020-00738-2.
23 Ko JZH, Johnson S, Dave M. Efficacy and safety of mesenchymal stem/stromal cell therapy for inflammatory bowel diseases: an up-to-date systematic review[J]. Biomolecules, 2021, 11(1): 82. PMID: 33440772. PMCID: PMC7827559. DOI: 10.3390/biom11010082.
24 Lu J, Shen SM, Ling Q, et al. One repeated transplantation of allogeneic umbilical cord mesenchymal stromal cells in type 1 diabetes: an open parallel controlled clinical study[J]. Stem Cell Res Ther, 2021, 12(1): 340. PMID: 34112266. PMCID: PMC8194026. DOI: 10.1186/s13287-021-02417-3.
25 Chang YS, Ahn SY, Yoo HS, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial[J]. J Pediatr, 2014, 164(5): 966-972.e6. PMID: 24508444. DOI: 10.1016/j.jpeds.2013.12.011.
26 Caplan AI. Mesenchymal stem cells: time to change the name![J]. Stem Cells Transl Med, 2017, 6(6): 1445-1451. PMID: 28452204. PMCID: PMC5689741. DOI: 10.1002/sctm.17-0051.
27 Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: from physiology to therapeutics[J]. Stem Cells, 2020, 38(10): 1241-1253. PMID: 32526037. DOI: 10.1002/stem.3242.
28 Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. iScience, 2019, 15: 421-438. PMID: 31121468. PMCID: PMC6529790. DOI: 10.1016/j.isci.2019.05.004.
29 Sensebé L, Fleury-Cappellesso S. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting[J]. Stem Cells Int, 2013, 2013: 678063. PMID: 24222773. PMCID: PMC3810433. DOI: 10.1155/2013/678063.
30 Ee MT, Thébaud B. The therapeutic potential of stem cells for bronchopulmonary dysplasia: "it's about time" or "not so fast"?[J]. Curr Pediatr Rev, 2018, 14(4): 227-238. PMID: 30205800. PMCID: PMC6416190. DOI: 10.2174/1573396314666180911100503.
31 Pierro M, Ionescu L, Montemurro T, et al. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia[J]. Thorax, 2013, 68(5): 475-484. PMID: 23212278. DOI: 10.1136/thoraxjnl-2012-202323.
32 Paliwal S, Chaudhuri R, Agrawal A, et al. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J]. J Biomed Sci, 2018, 25(1): 31. PMID: 29602309. PMCID: PMC5877369. DOI: 10.1186/s12929-018-0429-1.
33 van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. PMID: 29339798. DOI: 10.1038/nrm.2017.125.
34 Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. PMID: 30637094. PMCID: PMC6322352. DOI: 10.1080/20013078.2018.1535750.
35 Leeman KT, Pessina P, Lee JH, et al. Mesenchymal stem cells increase alveolar differentiation in lung progenitor organoid cultures[J]. Sci Rep, 2019, 9(1): 6479. PMID: 31015509. PMCID: PMC6478947. DOI: 10.1038/s41598-019-42819-1.
36 Chaubey S, Thueson S, Ponnalagu D, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6[J]. Stem Cell Res Ther, 2018, 9(1): 173. PMID: 29941022. PMCID: PMC6019224. DOI: 10.1186/s13287-018-0903-4.
37 Willis GR, Fernandez-Gonzalez A, Reis M, et al. Mesenchymal stromal cell-derived small extracellular vesicles restore lung architecture and improve exercise capacity in a model of neonatal hyperoxia-induced lung injury[J]. J Extracell Vesicles, 2020, 9(1): 1790874. PMID: 32939235. PMCID: PMC7480622. DOI: 10.1080/20013078.2020.1790874.
38 Rodriguez AM, Nakhle J, Griessinger E, et al. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury[J]. Cell Cycle, 2018, 17(6): 712-721. PMID: 29582715. PMCID: PMC5969546. DOI: 10.1080/15384101.2018.1445906.
39 Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS[J]. Stem Cells, 2016, 34(8): 2210-2223. PMID: 27059413. PMCID: PMC4982045. DOI: 10.1002/stem.2372.
40 Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow—derived stromal cells to pulmonary alveoli protects against acute lung injury[J]. Nat Med, 2012, 18(5): 759-765. PMID: 22504485. PMCID: PMC3727429. DOI: 10.1038/nm.2736.
41 Al-Rubaie A, Wise AF, Sozo F, et al. The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice[J]. Respir Res, 2018, 19(1): 114. PMID: 29884181. PMCID: PMC5994120. DOI: 10.1186/s12931-018-0816-x.
42 Kwon JH, Kim M, Bae YK, et al. Decorin secreted by human umbilical cord blood-derived mesenchymal stem cells induces macrophage polarization via CD44 to repair hyperoxic lung injury[J]. Int J Mol Sci, 2019, 20(19): 4815. PMID: 31569732. PMCID: PMC6801980. DOI: 10.3390/ijms20194815.
43 Dyer DP, Salanga CL, Johns SC, et al. The anti-inflammatory protein TSG-6 regulates chemokine function by inhibiting chemokine/glycosaminoglycan interactions[J]. J Biol Chem, 2016, 291(24): 12627-12640. PMID: 27044744. PMCID: PMC4933465. DOI: 10.1074/jbc.M116.720953.
44 Wang G, Cao K, Liu KL, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells[J]. Cell Death Differ, 2018, 25(7): 1209-1223. PMID: 29238069. PMCID: PMC6030103. DOI: 10.1038/s41418-017-0006-2.
45 Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders[J]. Respir Med, 2019, 156: 33-46. PMID: 31421589. DOI: 10.1016/j.rmed.2019.08.003.
46 Jin SS, Yang CZ, Huang JH, et al. Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells[J]. Stem Cell Res Ther, 2020, 11(1): 68. PMID: 32070425. PMCID: PMC7029497. DOI: 10.1186/s13287-020-1584-3.
47 Blázquez R, Sánchez-Margallo FM, álvarez V, et al. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates[J]. PLoS One, 2018, 13(4): e0196080. PMID: 29684038. PMCID: PMC5912768. DOI: 10.1371/journal.pone.0196080.
48 An Y, Liu WJ, Xue P, et al. Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion[J]. Cell Death Dis, 2018, 9(2): 58. PMID: 29352190. PMCID: PMC5833357. DOI: 10.1038/s41419-017-0082-8.
49 Braun RK, Chetty C, Balasubramaniam V, et al. Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia[J]. Biochem Biophys Res Commun, 2018, 503(4): 2653-2658. PMID: 30093115. PMCID: PMC6398932. DOI: 10.1016/j.bbrc.2018.08.019.
50 Warburton D, Schwarz M, Tefft D, et al. The molecular basis of lung morphogenesis[J]. Mech Dev, 2000, 92(1): 55-81. PMID: 10704888. DOI: 10.1016/s0925-4773(99)00325-1.
51 Hines EA, Sun X. Tissue crosstalk in lung development[J]. J Cell Biochem, 2014, 115(9): 1469-1477. PMID: 24644090. DOI: 10.1002/jcb.24811.
52 Jiménez J, Lesage F, Richter J, et al. Upregulation of vascular endothelial growth factor in amniotic fluid stem cells enhances their potential to attenuate lung injury in a preterm rabbit model of bronchopulmonary dysplasia[J]. Neonatology, 2018, 113(3): 275-285. PMID: 29393249. DOI: 10.1159/000481794.
53 Kuchroo P, Dave V, Vijayan A, et al. Paracrine factors secreted by umbilical cord-derived mesenchymal stem cells induce angiogenesis in vitro by a VEGF-independent pathway[J]. Stem Cells Dev, 2015, 24(4): 437-450. PMID: 25229480. PMCID: PMC4313407. DOI: 10.1089/scd.2014.0184.
54 Reiter J, Drummond S, Sammour I, et al. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia[J]. Respir Res, 2017, 18(1): 137. PMID: 28701189. PMCID: PMC5506612. DOI: 10.1186/s12931-017-0620-z.
55 Shen CY, Lie PC, Miao TY, et al. Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis[J]. Mol Med Rep, 2015, 12(1): 20-30. PMID: 25739039. PMCID: PMC4438972. DOI: 10.3892/mmr.2015.3409.
56 Ma D, Gao WH, Liu JJ, et al. Mechanism of oxidative stress and Keap-1/Nrf2 signaling pathway in bronchopulmonary dysplasia[J]. Medicine (Baltimore), 2020, 99(26): e20433. PMID: 32590729. PMCID: PMC7328910. DOI: 10.1097/MD.0000000000020433.
57 Cao HM, Cheng YQ, Gao HQ, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury[J]. ACS Nano, 2020, 14(4): 4014-4026. PMID: 32212674. DOI: 10.1021/acsnano.9b08207.
58 Zhang Q, Cheng XF, Zhang HZ, et al. Dissecting molecular mechanisms underlying H2O2-induced apoptosis of mouse bone marrow mesenchymal stem cell: role of Mst1 inhibition[J]. Stem Cell Res Ther, 2020, 11(1): 526. PMID: 33298178. PMCID: PMC7724846. DOI: 10.1186/s13287-020-02041-7.
59 Inan M, Bakar E, Cerkezkayabekir A, et al. Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage[J]. J Pediatr Surg, 2017, 52(7): 1196-1206. PMID: 28118930. DOI: 10.1016/j.jpedsurg.2016.12.024.
60 Korkmaz-Ic?z S, Zhou PY, Guo YX, et al. Mesenchymal stem cell-derived conditioned medium protects vascular grafts of brain-dead rats against in vitro ischemia/reperfusion injury[J]. Stem Cell Res Ther, 2021, 12(1): 144. PMID: 33627181. PMCID: PMC7905634. DOI: 10.1186/s13287-021-02166-3.
61 Changizi-Ashtiyani S, Hafazeh L, Ghasemi F, et al. The effect of adipose-derived mesenchymal stem cells on renal function and histopathology in a rat model of ischemia-reperfusion induced acute kidney injury[J]. Iran J Basic Med Sci, 2020, 23(8): 999-1006. PMID: 32952945. PMCID: PMC7478256. DOI: 10.22038/ijbms.2020.40334.9601.
62 Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy[J]. Stem Cells Transl Med, 2020, 9(9): 985-1006. PMID: 32497410. PMCID: PMC7445024. DOI: 10.1002/sctm.19-0446.
63 Nguyen LT, Trieu TTH, Bui HTH, et al. Allogeneic administration of human umbilical cord-derived mesenchymal stem/stromal cells for bronchopulmonary dysplasia: preliminary outcomes in four Vietnamese infants[J]. J Transl Med, 2020, 18(1): 398. PMID: 33081796. PMCID: PMC7576694. DOI: 10.1186/s12967-020-02568-6.
64 Ushakumary MG, Riccetti M, Perl AKT. Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration[J]. Stem Cells Transl Med, 2021, 10(7): 1021-1032. PMID: 33624948. PMCID: PMC8235143. DOI: 10.1002/sctm.20-0526.
65 Thébaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia[J]. Nat Rev Dis Primers, 2019, 5(1): 78. PMID: 31727986. PMCID: PMC6986462. DOI: 10.1038/s41572-019-0127-7.
66 Rockel JS, Rabani R, Viswanathan S. Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases[J]. Semin Cell Dev Biol, 2020, 101: 87-103. PMID: 31757583. DOI: 10.1016/j.semcdb.2019.10.014.
67 Chen WX, Zhou J, Zhou SS, et al. Microvesicles derived from human Wharton's jelly mesenchymal stem cells enhance autophagy and ameliorate acute lung injury via delivery of miR-100[J]. Stem Cell Res Ther, 2020, 11(1): 113. PMID: 32169098. PMCID: PMC7071666. DOI: 10.1186/s13287-020-01617-7.
68 Mazziotta C, Lanzillotti C, Iaquinta MR, et al. MicroRNAs modulate signaling pathways in osteogenic differentiation of mesenchymal stem cells[J]. Int J Mol Sci, 2021, 22(5): 2362. PMID: 33673409. PMCID: PMC7956574. DOI: 10.3390/ijms22052362.
69 Zhong H, Fan XL, Fang SB, et al. Human pluripotent stem cell-derived mesenchymal stem cells prevent chronic allergic airway inflammation via TGF-β1-Smad2/Smad3 signaling pathway in mice[J]. Mol Immunol, 2019, 109: 51-57. PMID: 30852246. DOI: 10.1016/j.molimm.2019.02.017.
70 Gong RJ, Rifai A, Tolbert EM, et al. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis[J]. J Am Soc Nephrol, 2003, 14(12): 3047-3060. PMID: 14638904. DOI: 10.1097/01.asn.0000098686.72971.db.
71 Ono M, Ohkouchi S, Kanehira M, et al. Mesenchymal stem cells correct inappropriate epithelial-mesenchyme relation in pulmonary fibrosis using stanniocalcin-1[J]. Mol Ther, 2015, 23(3): 549-560. PMID: 25373521. PMCID: PMC4351453. DOI: 10.1038/mt.2014.217.
72 Popova AP, Bozyk PD, Bentley JK, et al. Isolation of tracheal aspirate mesenchymal stromal cells predicts bronchopulmonary dysplasia[J]. Pediatrics, 2010, 126(5): e1127-e1133. PMID: 20937656. PMCID: PMC3887445. DOI: 10.1542/peds.2009-3445.
73 Ahn SY, Chang YS, Kim JH, et al. Two-year follow-up outcomes of premature infants enrolled in the phase Ⅰ trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia[J]. J Pediatr, 2017, 185: 49-54.e2. PMID: 28341525. DOI: 10.1016/j.jpeds.2017.02.061.
74 Pierro M, Thébaud B, Soll R. Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants[J]. Cochrane Database Syst Rev, 2015, 2015(11): CD011932. DOI: 10.1002/14651858.CD011932.
75 Mushtaq A. Progress needed in bronchopulmonary dysplasia[J]. Lancet Respir Med, 2019, 7(4): 300-301. PMID: 30833220. DOI: 10.1016/S2213-2600(19)30075-X.

PDF(568 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/