托莫西汀在注意力缺陷多动障碍患儿中的精准药学研究:CYP2D6基因检测和治疗药物监测

符迪, 郭宏丽, 胡雅慧, 陈峰

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (1) : 98-103.

PDF(666 KB)
HTML
PDF(666 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (1) : 98-103. DOI: 10.7499/j.issn.1008-8830.2208092
综述

托莫西汀在注意力缺陷多动障碍患儿中的精准药学研究:CYP2D6基因检测和治疗药物监测

  • 符迪1,2, 郭宏丽1, 胡雅慧1, 陈峰1
作者信息 +

A precision medication study of atomoxetine in children with attention deficit hyperactivity disorder: CYP2D6 genetic testing and therapeutic drug monitoring

  • FU Di, GUO Hong-Li, HU Ya-Hui, CHEN Feng
Author information +
文章历史 +

摘要

托莫西汀是第一种用于治疗儿童和成人注意力缺陷多动障碍(attention deficit hyperactivity disorder,ADHD)的非兴奋剂药物,其安全性和有效性在儿科人群中表现出显著的差异性。该文首先从托莫西汀主要代谢酶CYP2D6基因多态性方面综述了影响托莫西汀药代动力学的遗传因素。同时,从治疗药物监测角度,总结了已有研究提出的托莫西汀在ADHD患儿中的有效浓度参考范围。总体而言,托莫西汀血药浓度峰值与临床疗效之间存在相关性,但缺乏中国儿童人群数据。因此,建立托莫西汀暴露的临床相关指标,定义中国ADHD患儿的有效治疗范围,结合CYP2D6基因分型,为托莫西汀的精准用药提供支持十分必要。

Abstract

Atomoxetine is the first non-stimulant drug for the treatment of children and adults with attention deficit hyperactivity disorder (ADHD), and its safety and efficacy show significant differences in the pediatric population. This article reviews the genetic factors influencing the pharmacokinetic differences of atomoxetine from the aspect of the gene polymorphisms of the major metabolizing enzyme CYP2D6 of atomoxetine, and then from the perspective of therapeutic drug monitoring, this article summarizes the reference ranges of the effective concentration of atomoxetine in children with ADHD proposed by several studies. In general, there is an association between the peak plasma concentration of atomoxetine and clinical efficacy, but with a lack of data from the Chinese pediatric population. Therefore, it is necessary to establish related clinical indicators for atomoxetine exposure, define the therapeutic exposure range of children with ADHD in China, and combine CYP2D6 genotyping to provide support for the precision medication of atomoxetine.

关键词

注意力缺陷多动障碍 / 托莫西汀 / CYP2D6 / 精准用药 / 儿童

Key words

Attention deficit hyperactivity disorder / Atomoxetine / CYP2D6 / Precision medication / Child

引用本文

导出引用
符迪, 郭宏丽, 胡雅慧, 陈峰. 托莫西汀在注意力缺陷多动障碍患儿中的精准药学研究:CYP2D6基因检测和治疗药物监测[J]. 中国当代儿科杂志. 2023, 25(1): 98-103 https://doi.org/10.7499/j.issn.1008-8830.2208092
FU Di, GUO Hong-Li, HU Ya-Hui, CHEN Feng. A precision medication study of atomoxetine in children with attention deficit hyperactivity disorder: CYP2D6 genetic testing and therapeutic drug monitoring[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(1): 98-103 https://doi.org/10.7499/j.issn.1008-8830.2208092

参考文献

1 Fu D, Wu DD, Guo HL, et al. The mechanism, clinical efficacy, safety, and dosage regimen of atomoxetine for ADHD therapy in children: a narrative review[J]. Front Psychiatry, 2022, 12: 780921. PMID: 35222104. PMCID: PMC8863678. DOI: 10.3389/fpsyt.2021.780921.
2 Cutler AJ, Mattingly GW, Jain R, et al. Current and future nonstimulants in the treatment of pediatric ADHD: monoamine reuptake inhibitors, receptor modulators, and multimodal agents[J]. CNS Spectr, 2022, 27(2): 199-207. PMID: 33121553. DOI: 10.1017/S1092852920001984.
3 Cortese S, Adamo N, Del Giovane C, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis[J]. Lancet Psychiatry, 2018, 5(9): 727-738. PMID: 30097390. PMCID: PMC6109107. DOI: 10.1016/S2215-0366(18)30269-4.
4 刘靖, 郑毅. 《中国注意缺陷多动障碍防治指南》第二版解读[J]. 中华精神科杂志, 2016, 49(3): 132-135. DOI: 10.3760/cma.j.issn.1006-7884.2016.03.002.
5 中华医学会儿科学分会发育行为学组. 注意缺陷多动障碍早期识别、规范诊断和治疗的儿科专家共识[J]. 中华儿科杂志, 2020, 58(3): 188-193. PMID: 32135589. DOI: 10.3760/cma.j.issn.0578-1310.2020.03.006.
6 Newcorn JH, Sutton VK, Weiss MD, et al. Clinical responses to atomoxetine in attention-deficit/hyperactivity disorder: the integrated data exploratory analysis (IDEA) study[J]. J Am Acad Child Adolesc Psychiatry, 2009, 48(5): 511-518. PMID: 19318988. DOI: 10.1097/CHI.0b013e31819c55b2.
7 Brown JT, Bishop JR, Sangkuhl K, et al. Clinical pharmacogenetics implementation consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy[J]. Clin Pharmacol Ther, 2019, 106(1): 94-102. PMID: 30801677. PMCID: PMC6612570. DOI: 10.1002/cpt.1409.
8 Ruppert K, Geffert C, Clement HW, et al. Therapeutic drug monitoring of atomoxetine in children and adolescents with attention-deficit/ hyperactivity disorder: a naturalistic study[J]. J Neural Transm (Vienna), 2022, 129(7): 945-959. PMID: 35391568. PMCID: PMC9217867. DOI: 10.1007/s00702-022-02483-8.
9 Hiemke C, Bergemann N, Clement HW, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017[J]. Pharmacopsychiatry, 2018, 51(1-02): 9-62. PMID: 28910830. DOI: 10.1055/s-0043-116492.
10 Sauer JM, Ring BJ, Witcher JW. Clinical pharmacokinetics of atomoxetine[J]. Clin Pharmacokinet, 2005, 44(6): 571-590. PMID: 15910008. DOI: 10.2165/00003088-200544060-00002.
11 Yu G, Li GF, Markowitz JS. Atomoxetine: a review of its pharmacokinetics and pharmacogenomics relative to drug disposition[J]. J Child Adolesc Psychopharmacol, 2016, 26(4): 314-326. PMID: 26859445. PMCID: PMC4876529. DOI: 10.1089/cap.2015.0137.
12 Brown JT, Abdel-Rahman SM, van Haandel L, et al. Single dose, CYP2D6 genotype-stratified pharmacokinetic study of atomoxetine in children with ADHD[J]. Clin Pharmacol Ther, 2016, 99(6): 642-650. PMID: 26660002. PMCID: PMC4862932. DOI: 10.1002/cpt.319.
13 Protti M, Mandrioli R, Marasca C, et al. New-generation, non-SSRI antidepressants: drug-drug interactions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others[J]. Med Res Rev, 2020, 40(5): 1794-1832. PMID: 32285503. DOI: 10.1002/med.21671.
14 Michelson D, Read HA, Ruff DD, et al. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD[J]. J Am Acad Child Adolesc Psychiatry, 2007, 46(2): 242-251. PMID: 17242628. DOI: 10.1097/01.chi.0000246056.83791.b6.
15 Li Q, Wu YE, Wang K, et al. Developmental pharmacogenetics of CYP2D6 in Chinese children: loratadine as a substrate drug[J]. Front Pharmacol, 2021, 12: 657287. PMID: 34295246. PMCID: PMC8292113. DOI: 10.3389/fphar.2021.657287.
16 Alali M, Ismail Al-Khalil W, Rijjal S, et al. Frequencies of CYP2D6 genetic polymorphisms in Arab populations[J]. Hum Genomics, 2022, 16(1): 6. PMID: 35123571. PMCID: PMC8817534. DOI: 10.1186/s40246-022-00378-z.
17 Caudle KE, Sangkuhl K, Whirl-Carrillo M, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and Dutch pharmacogenetics working group[J]. Clin Transl Sci, 2020, 13(1): 116-124. PMID: 31647186. PMCID: PMC6951851. DOI: 10.1111/cts.12692.
18 Zhou W, Jiang Y, Xu Y, et al. Comparison of adverse drug reactions between tamoxifen and toremifene in breast cancer patients with different CYP2D6 genotypes: a propensity-score matched cohort study[J]. Int J Cancer, 2022, 150(10): 1664-1676. PMID: 34957551. DOI: 10.1002/ijc.33919.
19 王玉文, 周国岭, 刘艳, 等. CYP2D6基因多态性与托莫西汀治疗ADHD疗效的关联性研究进展[J]. 中国现代医生, 2018, 56(20): 165-168.
20 Byeon JY, Kim YH, Lee CM, et al. CYP2D6 allele frequencies in Korean population, comparison with East Asian, Caucasian and African populations, and the comparison of metabolic activity of CYP2D6 genotypes[J]. Arch Pharm Res, 2018, 41(9): 921-930. PMID: 30191460. DOI: 10.1007/s12272-018-1075-6.
21 Gaedigk A, Simon SD, Pearce RE, et al. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype[J]. Clin Pharmacol Ther, 2008, 83(2): 234-242. PMID: 17971818. DOI: 10.1038/sj.clpt.6100406.
22 Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance[J]. Drug Metab Pharmacokinet, 2012, 27(1): 55-67. PMID: 22185816. DOI: 10.2133/dmpk.DMPK-11-RV-121.
23 Cui YM, Teng CH, Pan AX, et al. Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele[J]. Br J Clin Pharmacol, 2007, 64(4): 445-449. PMID: 17610534. PMCID: PMC2048549. DOI: 10.1111/j.1365-2125.2007.02912.x.
24 Byeon JY, Kim YH, Na HS, et al. Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites[J]. Arch Pharm Res, 2015, 38(11): 2083-2091. PMID: 26254792. DOI: 10.1007/s12272-015-0646-z.
25 Kim SH, Byeon JY, Kim YH, et al. Physiologically based pharmacokinetic modelling of atomoxetine with regard to CYP2D6 genotypes[J]. Sci Rep, 2018, 8(1): 12405. PMID: 30120390. PMCID: PMC6098032. DOI: 10.1038/s41598-018-30841-8.
26 方妍彤, 陈敏, 吉宁, 等. CYP2D6基因多态与托莫西汀治疗儿童注意缺陷多动障碍反应的关联研究[J]. 中国心理卫生杂志, 2015, 29(6): 401-405. DOI: 10.3969/j.issn.1000-6729.2015.06.001.
27 Ramsey LB, Brown JT, Vear SI, et al. Gene-based dose optimization in children[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 311-331. PMID: 31283429. DOI: 10.1146/annurev-pharmtox-010919-023459.
28 Xia Y, Guo HL, Hu YH, et al. Determination of atomoxetine levels in human plasma using LC-MS/MS and clinical application to Chinese children with ADHD based on CPIC guidelines[J]. Anal Methods, 2021, 13(21): 2434-2441. PMID: 33998618. DOI: 10.1039/d1ay00521a.
29 Sugimoto A, Suzuki Y, Orime N, et al. The lowest effective plasma concentration of atomoxetine in pediatric patients with attention deficit/hyperactivity disorder: a non-randomized prospective interventional study[J]. Medicine (Baltimore), 2021, 100(27): e26552. PMID: 34232195. PMCID: PMC8270591. DOI: 10.1097/MD.0000000000026552.
30 Shi C, Xiao Y, Mao Y, et al. Voriconazole: a review of population pharmacokinetic analyses[J]. Clin Pharmacokinet, 2019, 58(6): 687-703. PMID: 30687893. DOI: 10.1007/s40262-019-00735-7.
31 Jing Y, Kong Y, Hou X, et al. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients[J]. J Clin Pharm Ther, 2021, 46(4): 1117-1128. PMID: 33768546. DOI: 10.1111/jcpt.13407.

基金

江苏卫生健康委员会特聘医学专家项目(2019);中国药学会医院药学专业委员会人才专项资助项目(CPA-Z05-ZC-2022-003)。

PDF(666 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/