Recent research on platelet-leukocyte aggregates and their role in the pathogenesis of Kawasaki disease
GAO Li-Chao, GONG Fang-Qi
Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health, Hangzhou 310052, China
Abstract:Activated platelets may interact with various types of leukocytes such as monocytes, neutrophils, dendritic cells, and lymphocytes, trigger intercellular signal transduction, and thus lead to thrombosis and synthesis of massive inflammatory mediators. Elevated levels of circulating platelet-leukocyte aggregates have been found in patients with thrombotic or inflammatory diseases. This article reviews the latest research on the formation, function, and detection methods of platelet-leukocyte aggregates and their role in the onset of Kawasaki disease, so as to provide new ideas for studying the pathogenesis of Kawasaki disease.
GAO Li-Chao,GONG Fang-Qi. Recent research on platelet-leukocyte aggregates and their role in the pathogenesis of Kawasaki disease[J]. CJCP, 2023, 25(6): 587-594.
Semple JW, Italiano JE, Freedman J. Platelets and the immune continuum[J]. Nat Rev Immunol, 2011, 11(4): 264-274. PMID: 21436837. DOI: 10.1038/nri2956.
Hottz ED, Quirino-Teixeira AC, Merij LB, et al. Platelet-leukocyte interactions in the pathogenesis of viral infections[J]. Platelets, 2022, 33(2): 200-207. PMID: 34260328. DOI: 10.1080/09537104.2021.1952179.
Ju LA, Kossmann S, Zhao YC, et al. Microfluidic post method for 3-dimensional modeling of platelet-leukocyte interactions[J]. Analyst, 2022, 147(6): 1222-1235. PMID: 35212697. DOI: 10.1039/d2an00270a.
Dziedzic A, Bijak M. Interactions between platelets and leukocytes in pathogenesis of multiple sclerosis[J]. Adv Clin Exp Med, 2019, 28(2): 277-285. PMID: 30411550. DOI: 10.17219/acem/83588.
Palabrica T, Lobb R, Furie BC, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets[J]. Nature, 1992, 359(6398): 848-851. PMID: 1279433. DOI: 10.1038/359848a0.
Finsterbusch M, Norman MU, Hall P, et al. Platelet retention in inflamed glomeruli occurs via selective prolongation of interactions with immune cells[J]. Kidney Int, 2019, 95(2): 363-374. PMID: 30522769. DOI: 10.1016/j.kint.2018.08.042.
Trotta A, Milillo MA, Serafino A, et al. Brucella abortus—infected platelets modulate the activation of neutrophils[J]. Immunol Cell Biol, 2020, 98(9): 743-756. PMID: 32623755. DOI: 10.1111/imcb.12373.
Kullaya V, van der Ven A, Mpagama S, et al. Platelet-monocyte interaction in Mycobacterium tuberculosis infection[J]. Tuberculosis (Edinb), 2018, 111: 86-93. PMID: 30029921. DOI: 10.1016/j.tube.2018.05.002.
Hall LS, Lennon CS, Hall AM, et al. Combination peptide immunotherapy suppresses antibody and helper T-cell responses to the major human platelet autoantigen glycoprotein IIb/IIIa in HLA-transgenic mice[J]. Haematologica, 2019, 104(5): 1074-1082. PMID: 30514805. PMCID: PMC6518892. DOI: 10.3324/haematol.2017.179424.
Linke B, Schreiber Y, Picard-Willems B, et al. Activated platelets induce an anti-inflammatory response of monocytes/macrophages through cross-regulation of PGE2 and cytokines[J]. Mediators Inflamm, 2017, 2017: 1463216. PMID: 28592915. PMCID: PMC5448075. DOI: 10.1155/2017/1463216.
Schrottmaier WC, Kral JB, Badrnya S, et al. Aspirin and P2Y12 inhibitors in platelet-mediated activation of neutrophils and monocytes[J]. Thromb Haemost, 2015, 114(3): 478-489. PMID: 25904241. DOI: 10.1160/TH14-11-0943.
Mansour A, Roussel M, Gaussem P, et al. Platelet functions during extracorporeal membrane oxygenation. Platelet-leukocyte aggregates analyzed by flow cytometry as a promising tool to monitor platelet activation[J]. J Clin Med, 2020, 9(8): 2361. PMID: 32718096. PMCID: PMC7464627. DOI: 10.3390/jcm9082361.
Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, et al. Revisiting platelets and toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis[J]. Int J Mol Sci, 2020, 21(17): 6150. PMID: 32858930. PMCID: PMC7504402. DOI: 10.3390/ijms21176150.
Rossaint J, Thomas K, Mersmann S, et al. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education[J]. J Exp Med, 2021, 218(7): e20201353. PMID: 34014253. PMCID: PMC8142284. DOI: 10.1084/jem.20201353.
Karnell JL, Rieder SA, Ettinger R, et al. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond[J]. Adv Drug Deliv Rev, 2019, 141: 92-103. PMID: 30552917. DOI: 10.1016/j.addr.2018.12.005.
Yaw HP, Van Den Helm S, Linden M, et al. Whole blood flow cytometry protocol for the assessment of platelet phenotype, function, and cellular interactions[J]. Platelets, 2021, 32(6): 786-793. PMID: 32881599. DOI: 10.1080/09537104.2020.1810222.
Corken A, Ware J, Dai J, et al. Platelet-dependent inflammatory dysregulation in patients with stages 4 or 5 chronic kidney disease: a mechanistic clinical study[J]. Kidney360, 2022, 3(12): 2036-2047. PMID: 36591354. PMCID: PMC9802560. DOI: 10.34067/KID.0005532022.
Dai Y, Xu R, Wu G, et al. Aspirin suppresses hepatic glucagon signaling through decreasing production of thromboxane A2[J]. Endocrinology, 2023, 164(3): bqac217. PMID: 36592127. DOI: 10.1210/endocr/bqac217.
Mirabito Colafella KM, Neuman RI, Visser W, et al. Aspirin for the prevention and treatment of pre-eclampsia: a matter of COX-1 and/or COX-2 inhibition?[J]. Basic Clin Pharmacol Toxicol, 2020, 127(2): 132-141. PMID: 31420920. PMCID: PMC7496715. DOI: 10.1111/bcpt.13308.
Zhong H, Waresi M, Zhang W, et al. NOD2-mediated P2Y12 upregulation increases platelet activation and thrombosis in sepsis[J]. Biochem Pharmacol, 2021, 194: 114822. PMID: 34748820. DOI: 10.1016/j.bcp.2021.114822.
Wang XL, Deng HF, Li T, et al. Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophil-platelet aggregates in an experimental endotoxemic model[J]. J Biochem Mol Toxicol, 2019, 33(4): e22279. PMID: 30537341. DOI: 10.1002/jbt.22279.
Klinkhardt U, Bauersachs R, Adams J, et al. Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease[J]. Clin Pharmacol Ther, 2003, 73(3): 232-241. PMID: 12621388. DOI: 10.1067/mcp.2003.13.
Rudolph TK, Fuchs A, Klinke A, et al. Prasugrel as opposed to clopidogrel improves endothelial nitric oxide bioavailability and reduces platelet-leukocyte interaction in patients with unstable angina pectoris: a randomized controlled trial[J]. Int J Cardiol, 2017, 248: 7-13. PMID: 28709700. DOI: 10.1016/j.ijcard.2017.06.099.
Straface E, Gambardella L, Metere A, et al. Oxidative stress and defective platelet apoptosis in na?ve patients with Kawasaki disease[J]. Biochem Biophys Res Commun, 2010, 392(3): 426-430. PMID: 20079717. DOI: 10.1016/j.bbrc.2010.01.040.
Ueno K, Nomura Y, Morita Y, et al. Circulating platelet-neutrophil aggregates play a significant role in Kawasaki disease[J]. Circ J, 2015, 79(6): 1349-1356. PMID: 25787672. DOI: 10.1253/circj.CJ-14-1323.
Vignesh P, Rawat A, Shandilya JK, et al. Monocyte platelet aggregates in children with Kawasaki disease: a preliminary study from a tertiary care centre in North-West India[J]. Pediatr Rheumatol Online J, 2021, 19(1): 25. PMID: 33712020. PMCID: PMC7953550. DOI: 10.1186/s12969-021-00515-3.
Terai M, Shulman ST. Prevalence of coronary artery abnormalities in Kawasaki disease is highly dependent on gamma globulin dose but independent of salicylate dose[J]. J Pediatr, 1997, 131(6): 888-893. PMID: 9427895. DOI: 10.1016/s0022-3476(97)70038-6.
Sanati F, Bagheri M, Eslami S, et al. Evaluation of high-dose aspirin elimination in the treatment of Kawasaki disease in the incidence of coronary artery aneurysm[J]. Ann Pediatr Cardiol, 2021, 14(2): 146-151. PMID: 34103852. PMCID: PMC8174624. DOI: 10.4103/apc.APC_206_20.
Chiang MH, Liu HE, Wang JL. Low-dose or no aspirin administration in acute-phase Kawasaki disease: a meta-analysis and systematic review[J]. Arch Dis Child, 2021, 106(7): 662-668. PMID: 33172886. DOI: 10.1136/archdischild-2019-318245.
Low T, Jegatheeswaran A, Devlin PJ, et al. Bleeding risk associated with combination thromboprophylaxis therapy is low for patients with coronary artery aneurysms after Kawasaki disease[J]. Int J Cardiol, 2020, 321: 6-11. PMID: 32697954. DOI: 10.1016/j.ijcard.2020.07.022.
Zhang C, Chen L, Chen S, et al. Predictive role of IL-2R and IL-10 in the anti-inflammatory response and antiplatelet therapy of Kawasaki disease: a retrospective study[J]. Mediators Inflamm, 2022, 2022: 4917550. PMID: 35153622. PMCID: PMC8831045. DOI: 10.1155/2022/4917550.
Zhang M, Meng L, Chen Y, et al. CYP2C19 polymorphisms and lipoproteins associated with clopidogrel resistance in children with Kawasaki disease in China: a prospective study[J]. Front Cardiovasc Med, 2022, 9: 925518. PMID: 36072880. PMCID: PMC9441694. DOI: 10.3389/fcvm.2022.925518.