目的 探讨血浆致动脉硬化指数(atherogenic index of plasma,AIP)与儿童支气管哮喘的关系。 方法 回顾性选取2020年7月—2022年8月于南京医科大学附属常州第二人民医院住院治疗的86例支气管哮喘患儿为哮喘组,选取同期149例健康体检儿童为对照组。收集两组的临床资料,包括血清总胆固醇(total cholesterol,TC)、三酰甘油(triglycerides,TG)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)、血糖检测数据及身高、体重、体重指数(body mass index,BMI)、有无特异性皮炎、吸入性过敏原过敏史、哮喘家族史及喂养史等资料。采用多因素logistic回归分析研究AIP、TG及HDL-C与支气管哮喘的关系。采用受试者操作特征曲线(receiver operating characteristic curve,ROC曲线)评估AIP、TG、HDL-C预测支气管哮喘的价值。 结果 哮喘组AIP、TG水平显著高于对照组,HDL-C显著低于对照组,差异有统计学意义(P<0.05);两组TC、LDL-C的比较差异无统计学意义(P>0.05)。在调整身高、体重、有无特异性皮炎、吸入性过敏原过敏史、哮喘家族史、人工喂养、混合喂养及血糖前后,多因素logistic回归分析显示AIP、TG、HDL-C均与支气管哮喘相关(P<0.05)。ROC曲线分析发现AIP取-0.333是预测支气管哮喘的最佳临界值,灵敏度为80.2%,特异度为55.0%,阳性预测值为50.71%,阴性预测值为82.85%。比较AIP、TG、HDL-C预测支气管哮喘的AUC发现,AIP的AUC显著高于TG,差异有统计学意义(P=0.009),但AIP与HDL-C的AUC比较差异无统计学意义(P=0.686)。 结论 AIP、TG、HDL-C均与支气管哮喘相关。AIP对支气管哮喘的预测价值高于TG,与HDL-C的价值相当。
Abstract
Objective To explore the relationship between atherogenic index of plasma (AIP) and childhood asthma. Methods This retrospective study included 86 children with asthma admitted to the Changzhou Second People's Hospital Affiliated to Nanjing Medical University from July 2020 to August 2022 as the asthma group and 149 healthy children undergoing physical examination during the same period as the control group. Metabolic parameters including total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and blood glucose, as well as general information of the children such as height, weight, body mass index, presence of specific dermatitis, history of inhalant allergen hypersensitivity, family history of asthma, and feeding history, were collected. Multivariable logistic regression analysis was used to study the relationship between AIP, triglycerides, and high-density lipoprotein cholesterol and asthma. The value of AIP, triglycerides, and high-density lipoprotein cholesterol for predicting asthma was assessed using receiver operating characteristic (ROC) curve analysis. Results The AIP and triglyceride levels in the asthma group were significantly higher than those in the control group, while high-density lipoprotein cholesterol was significantly lower (P<0.05). However, there was no significant difference in total cholesterol and low-density lipoprotein cholesterol between the two groups (P>0.05). Before and after adjusting for height, weight, presence of specific dermatitis, history of inhalant allergen hypersensitivity, family history of asthma, feeding method, and blood glucose, multivariable logistic regression analysis showed that AIP, triglycerides, and high-density lipoprotein cholesterol were associated with asthma (P<0.05). ROC curve analysis showed that the optimal cutoff value for predicting asthma with AIP was -0.333, with a sensitivity of 80.2%, specificity of 55.0%, positive predictive value of 50.71%, and negative predictive value of 82.85%. The area under the curve (AUC) for AIP in predicting asthma was significantly higher than that for triglycerides (P=0.009), but there was no significant difference in AUC between AIP and high-density lipoprotein cholesterol (P=0.686). Conclusions AIP, triglycerides, and high-density lipoprotein cholesterol are all associated with asthma. AIP has a higher value for predicting asthma than triglycerides and comparable value to high-density lipoprotein cholesterol.
关键词
血浆致动脉硬化指数 /
血脂 /
哮喘 /
儿童
Key words
Atherogenic index of plasma /
Blood lipid /
Asthma /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Boulet LP, Reddel HK, Bateman E, et al. The global initiative for asthma (GINA): 25 years later[J]. Eur Respir J, 2019, 54(2): 1900598. PMID: 31273040. DOI: 10.1183/13993003.00598-2019.
2 Global Initiative for Asthma. Global strategy for asthma management and prevention (update 2021)[EB/OL]. [2022-03-29]. https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report-2021-V2-WMS.pdf.
3 Peng J, Huang Y. Meta-analysis of the association between asthma and serum levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol[J]. Ann Allergy Asthma Immunol, 2017, 118(1): 61-65. PMID: 27839668. DOI: 10.1016/j.anai.2016.09.447.
4 Lu M, Wu B, Qiao R, et al. No associations between serum lipid levels or HOMA-IR and asthma in children and adolescents: a NHANES analysis[J]. J Clin Res Pediatr Endocrinol, 2019, 11(3): 270-277. PMID: 30759963. PMCID: PMC6745451. DOI: 10.4274/jcrpe.galenos.2019.2018.0098.
5 Tang Z, Shen M, Xiao Y, et al. Association between atopic dermatitis, asthma, and serum lipids: a UK biobank based observational study and mendelian randomization analysis[J]. Front Med (Lausanne), 2022, 9: 810092. PMID: 35265637. PMCID: PMC8899503. DOI: 10.3389/fmed.2022.810092.
6 Dobiásová M, Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma [FER(HDL)][J]. Clin Biochem, 2001, 34(7): 583-588. PMID: 11738396. DOI: 10.1016/s0009-9120(01)00263-6.
7 Ivanova EA, Myasoedova VA, Melnichenko AA, et al. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases[J]. Oxid Med Cell Longev, 2017, 2017: 1273042. PMID: 28572872. PMCID: PMC5441126. DOI: 10.1155/2017/1273042.
8 Zhu X, Yu L, Zhou H, et al. Atherogenic index of plasma is a novel and better biomarker associated with obesity: a population-based cross-sectional study in China[J]. Lipids Health Dis, 2018, 17(1): 37. PMID: 29506577. PMCID: PMC5836428. DOI: 10.1186/s12944-018-0686-8.
9 Kucera M, Oravec S, Hirnerova E, et al. Effect of atorvastatin on low-density lipoprotein subpopulations and comparison between indicators of plasma atherogenicity: a pilot study[J]. Angiology, 2014, 65(9): 794-799. PMID: 24163116. DOI: 10.1177/0003319713507476.
10 Shen SW, Lu Y, Li F, et al. Atherogenic index of plasma is an effective index for estimating abdominal obesity[J]. Lipids Health Dis, 2018, 17(1): 11. PMID: 29334966. PMCID: PMC5769292. DOI: 10.1186/s12944-018-0656-1.
11 洪建国. 我国儿童哮喘诊治现状和思考[J]. 四川大学学报(医学版), 2021, 52(5): 725-728. PMID: 34622583. DOI: 10.12182/20210960201.
12 王雪艳, 刘长山, 王峥, 等. 天津市城区0~14岁儿童支气管哮喘流行病学特点[J]. 中华实用儿科临床杂志, 2014, 29(4): 279-282. DOI: 10.3760/cma.j.issn.2095-428X.2014.04.010.
13 Bloom CI, Franklin C, Bush A, et al. Burden of preschool wheeze and progression to asthma in the UK: Population-based cohort 2007 to 2017[J]. J Allergy Clin Immunol, 2021, 147(5): 1949-1958. PMID: 33453287. DOI: 10.1016/j.jaci.2020.12.643.
14 温西苹, 李元霞. 儿童哮喘相关危险因素研究进展[J]. 新乡医学院学报, 2019, 36(11): 1092-1096. DOI: 10.7683/xxyxyxb.2019.11.021.
15 Zhao L, Yang Y, Zang YR, et al. Risk factors for asthma in patients with allergic rhinitis in eastern China[J]. Am J Otolaryngol, 2022, 43(3): 103426. PMID: 35460970. DOI: 10.1016/j.amjoto.2022.103426.
16 Yu J. Which subtype of atopic dermatitis progresses to asthma? A story about allergic march[J]. Allergy Asthma Immunol Res, 2022, 14(6): 585-586. PMID: 36426393. PMCID: PMC9709681. DOI: 10.4168/aair.2022.14.6.585.
17 Wilson K, Gebretsadik T, Adgent MA, et al. The association between duration of breastfeeding and childhood asthma outcomes[J]. Ann Allergy Asthma Immunol, 2022, 129(2): 205-211. PMID: 35552008. PMCID: PMC9442497. DOI: 10.1016/j.anai.2022.04.034.
18 Xue MK, Dehaas E, Chaudhary N, et al. Breastfeeding and risk of childhood asthma: a systematic review and meta-analysis[J]. ERJ Open Res, 2021, 7(4): 00504-2021. PMID: 34912884. PMCID: PMC8666625. DOI: 10.1183/23120541.00504-2021.
19 Barochia AV, Gordon EM, Kaler M, et al. High density lipoproteins and type 2 inflammatory biomarkers are negatively correlated in atopic asthmatics[J]. J Lipid Res, 2017, 58(8): 1713-1721. PMID: 28655726. PMCID: PMC5538292. DOI: 10.1194/jlr.P077776.
20 Su X, Ren Y, Li M, et al. Association between lipid profile and the prevalence of asthma: a meta-analysis and systemic review[J]. Curr Med Res Opin, 2018, 34(3): 423-433. PMID: 28945108. DOI: 10.1080/03007995.2017.1384371.
21 Jiang T, Dai L, Li P, et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(2): 158853. PMID: 33160078. DOI: 10.1016/j.bbalip.2020.158853.
22 Ikonen E. Cellular cholesterol trafficking and compartmentalization[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 125-138. PMID: 18216769. DOI: 10.1038/nrm2336.
23 Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling[J]. J Immunol, 2011, 187(4): 1529-1535. PMID: 21810617. PMCID: PMC3151145. DOI: 10.4049/jimmunol.1100253.
24 Horejsi V, Hrdinka M. Membrane microdomains in immunoreceptor signaling[J]. FEBS Lett, 2014, 588(15): 2392-2397. PMID: 24911201. DOI: 10.1016/j.febslet.2014.05.047.
25 Karr S. Epidemiology and management of hyperlipidemia[J]. Am J Manag Care, 2017, 23(9 Suppl): S139-S148. PMID: 28978219.
26 Emruzi Z, Babaheidarian P, Arshad M, et al. Immune modulatory effects of hypercholesterolemia: can atorvastatin convert the detrimental effect of hypercholesterolemia on the immune system?[J]. Iran J Allergy Asthma Immunol, 2019, 18(5): 554-566. PMID: 32245299. DOI: 10.18502/ijaai.v18i5.1925.
27 Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485. PMID: 33711259. DOI: 10.1016/j.cell.2021.02.016.
28 Verduci E, Banderali G, Di Profio E, et al. Effect of individual- versus collective-based nutritional-lifestyle intervention on the atherogenic index of plasma in children with obesity: a randomized trial[J]. Nutr Metab (Lond), 2021, 18(1): 11. PMID: 33436021. PMCID: PMC7805105. DOI: 10.1186/s12986-020-00537-w.
29 Cai G, Shi G, Xue S, et al. The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population[J]. Medicine (Baltimore), 2017, 96(37): e8058. PMID: 28906400. PMCID: PMC5604669. DOI: 10.1097/MD.0000000000008058.
30 李张曼玉, 李晓盼, 于莹, 等. 血浆致动脉硬化指数与冠状动脉病变严重程度的相关性研究[J]. 中国介入心脏病学杂志, 2019, 27(2): 107-110. DOI: 10.3969/j.issn.1004-8812.2019.02.008.