川崎病基因多态性的研究进展

董明星, 王喜霞, 焦富勇, 张维华

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (12) : 1234-1238.

PDF(495 KB)
HTML
PDF(495 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (12) : 1234-1238. DOI: 10.7499/j.issn.1008-8830.2308073
川崎病专栏

川崎病基因多态性的研究进展

  • 董明星1, 王喜霞1, 焦富勇2, 张维华1,3
作者信息 +

Research advances in genetic polymorphisms in Kawasaki disease

  • DONG Ming-Xing, WANG Xi-Xia, JIAO Fu-Yong, ZHANG Wei-Hua
Author information +
文章历史 +

摘要

川崎病(Kawasaki disease, KD)是一种好发于儿童的全身性血管炎症疾病,是儿童后天性心脏病的主要原因。虽然该病病因尚不清楚,但通过全基因组关联和全基因组连锁研究发现,一些易感基因和染色体区域与KD的发生发展相关。随着高通量DNA测序技术的发展,越来越多与KD相关的基因组信息被发现。了解KD发病机制中涉及的基因可能为该病的诊断和治疗提供新思路。该文通过分析相关文献,总结研究进展,主要讨论目前已证实与KD发生发展密切相关的增强T细胞活化类基因,揭示其与KD发病及冠状动脉损伤的相关性。

Abstract

Kawasaki disease (KD) is a systemic inflammatory vascular disorder that predominantly affects children and is the leading cause of acquired heart disease in children. Although the etiology of this disease remains unclear, genome-wide association and genome-wide linkage studies have shown that some susceptible genes and chromosomal regions are associated with the development and progression of KD. With the advancement of high-throughput DNA sequencing techniques, more and more genomic information related to KD is being discovered. Understanding the genes involved in the pathogenesis of KD may provide novel insights into the diagnosis and treatment of KD. By analyzing related articles and summarizing related research advances, this article mainly discusses the T cell activation-enhancing genes that have been confirmed to be closely associated with the development and progression of KD and reveals their association with the pathogenesis of KD and coronary artery lesions.

关键词

川崎病 / 基因多态性 / 易感性 / 冠状动脉病变

Key words

Kawasaki disease / Genetic polymorphism / Susceptibility / Coronary artery lesion

引用本文

导出引用
董明星, 王喜霞, 焦富勇, 张维华. 川崎病基因多态性的研究进展[J]. 中国当代儿科杂志. 2023, 25(12): 1234-1238 https://doi.org/10.7499/j.issn.1008-8830.2308073
DONG Ming-Xing, WANG Xi-Xia, JIAO Fu-Yong, ZHANG Wei-Hua. Research advances in genetic polymorphisms in Kawasaki disease[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(12): 1234-1238 https://doi.org/10.7499/j.issn.1008-8830.2308073

参考文献

1 Ae R, Makino N, Kosami K, et al. Epidemiology, treatments, and cardiac complications in patients with Kawasaki disease: the nationwide survey in Japan, 2017-2018[J]. J Pediatr, 2020, 225: 23-29.e2. PMID: 32454114. DOI: 10.1016/j.jpeds.2020.05.034.
2 McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. PMID: 28356445. DOI: 10.1161/CIR.0000000000000484.
3 Yim D, Curtis N, Cheung M, et al. Update on Kawasaki disease: epidemiology, aetiology and pathogenesis[J]. J Paediatr Child Health, 2013, 49(9): 704-708. PMID: 23560706. DOI: 10.1111/jpc.12172.
4 Chen Y, Ding YY, Ren Y, et al. Identification of differentially expressed microRNAs in acute Kawasaki disease[J]. Mol Med Rep, 2018, 17(1): 932-938. PMID: 29115644. PMCID: PMC5780174. DOI: 10.3892/mmr.2017.8016.
5 Kim GB. Reality of Kawasaki disease epidemiology[J]. Korean J Pediatr, 2019, 62(8): 292-296. PMID: 31319643. PMCID: PMC6702118. DOI: 10.3345/kjp.2019.00157.
6 Nakamura Y. Kawasaki disease: epidemiology and the lessons from it[J]. Int J Rheum Dis, 2018, 21(1): 16-19. PMID: 29115029. DOI: 10.1111/1756-185X.13211.
7 Liu Y, Fu L, Pi L, et al. An angiotensinogen gene polymorphism (rs5050) is associated with the risk of coronary artery aneurysm in Southern Chinese children with Kawasaki disease[J]. Dis Markers, 2019, 2019: 2849695. PMID: 30719178. PMCID: PMC6335657. DOI: 10.1155/2019/2849695.
8 Li KL, Jiao Y, Liang JJ, et al. Screening key differentially expressed genes in Kawasaki disease via integrated analysis[J]. Iran J Pediatr, 2021, 31(6): e114730. DOI: 10.5812/ijp.114730.
9 Bird L. NFAT: platelet stickiness regulator[J]. Nat Rev Immunol, 2022, 22(2): 74-75. PMID: 35031792. DOI: 10.1038/s41577-022-00677-5.
10 Onouchi Y, Suzuki Y, Suzuki H, et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease[J]. Pharmacogenomics J, 2013, 13(1): 52-59. PMID: 21987091. DOI: 10.1038/tpj.2011.45.
11 Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. PMID: 31284572. PMCID: PMC6651423. DOI: 10.3390/ijms20133328.
12 Kim KY, Bae YS, Ji W, et al. ITPKC and SLC11A1 gene polymorphisms and gene-gene interactions in Korean patients with Kawasaki disease[J]. Yonsei Med J, 2018, 59(1): 119-127. PMID: 29214786. PMCID: PMC5725348. DOI: 10.3349/ymj.2018.59.1.119.
13 Singh A, Rawat A, Kaur A, et al. Association of SNP (rs1042579) in thrombomodulin gene and plasma thrombomodulin level in north Indian children with Kawasaki disease[J]. Mol Biol Rep, 2022, 49(8): 7399-7407. PMID: 35587845. DOI: 10.1007/s11033-022-07533-8.
14 Bhattarai D, Kumrah R, Kaur A, et al. Association of ITPKC gene polymorphisms rs28493229 and rs2290692 in North Indian children with Kawasaki disease[J]. Pediatr Res, 2022, 92(4): 1090-1098. PMID: 34952936. DOI: 10.1038/s41390-021-01830-x.
15 Kuo HC, Hsu YW, Lo MH, et al. Single-nucleotide polymorphism rs7251246 in ITPKC is associated with susceptibility and coronary artery lesions in Kawasaki disease[J]. PLoS One, 2014, 9(3): e91118. PMID: 24621571. PMCID: PMC3951297. DOI: 10.1371/journal.pone.0091118.
16 Lin MT, Wang JK, Yeh JI, et al. Clinical implication of the C allele of the ITPKC gene SNP rs28493229 in Kawasaki disease: association with disease susceptibility and BCG scar reactivation[J]. Pediatr Infect Dis J, 2011, 30(2): 148-152. PMID: 20805785. DOI: 10.1097/INF.0b013e3181f43a4e.
17 McCarl CA, Khalil S, Ma J, et al. Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection[J]. J Immunol, 2010, 185(10): 5845-5858. PMID: 20956344. PMCID: PMC2974040. DOI: 10.4049/jimmunol.1001796.
18 Sogkas G, V?gtle T, Rau E, et al. Orai1 controls C5a-induced neutrophil recruitment in inflammation[J]. Eur J Immunol, 2015, 45(7): 2143-2153. PMID: 25912155. DOI: 10.1002/eji.201445337.
19 Shawer H, Norman K, Cheng CW, et al. ORAI1 Ca2+ channel as a therapeutic target in pathological vascular remodelling[J]. Front Cell Dev Biol, 2021, 9: 653812. PMID: 33937254. PMCID: PMC8083964. DOI: 10.3389/fcell.2021.653812.
20 Martínez-Martínez E, Sánchez-Vázquez VH, León-Aparicio D, et al. PKC-mediated Orai1 channel phosphorylation modulates Ca2+ signaling in HeLa cells[J]. Cells, 2022, 11(13): 2037. PMID: 35805121. PMCID: PMC9266177. DOI: 10.3390/cells11132037.
21 Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function[J]. Nature, 2006, 441(7090): 179-185. PMID: 16582901. DOI: 10.1038/nature04702.
22 Onouchi Y, Fukazawa R, Yamamura K, et al. Variations in ORAI1 gene associated with Kawasaki disease[J]. PLoS One, 2016, 11(1): e0145486. PMID: 26789410. PMCID: PMC4720480. DOI: 10.1371/journal.pone.0145486.
23 巴爽, 张宏艳. ORAI1基因rs3741596单核苷酸多态性与川崎病的关系[J]. 天津医药, 2018, 46(11): 1181-1185. DOI: 10.11958/20180803.
24 Chang WC, Lee CH, Hirota T, et al. ORAI1 genetic polymorphisms associated with the susceptibility of atopic dermatitis in Japanese and Taiwanese populations[J]. PLoS One, 2012, 7(1): e29387. PMID: 22253717. PMCID: PMC3258251. DOI: 10.1371/journal.pone.0029387.
25 Coperchini F, Croce L, Marinò M, et al. Role of chemokine receptors in thyroid cancer and immunotherapy[J]. Endocr Relat Cancer, 2019, 26(8): R465-R478. PMID: 31146261. DOI: 10.1530/ERC-19-0163.
26 Van Raemdonck K, Van den Steen PE, Liekens S, et al. CXCR3 ligands in disease and therapy[J]. Cytokine Growth Factor Rev, 2015, 26(3): 311-327. PMID: 25498524. DOI: 10.1016/j.cytogfr.2014.11.009.
27 Chang SF, Liu SF, Chen CN, et al. Serum IP-10 and IL-17 from Kawasaki disease patients induce calcification-related genes and proteins in human coronary artery smooth muscle cells in vitro[J]. Cell Biosci, 2020, 10: 36. PMID: 32190286. PMCID: PMC7066751. DOI: 10.1186/s13578-020-00400-8.
28 Ko TM, Kuo HC, Chang JS, et al. CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease[J]. Circ Res, 2015, 116(5): 876-883. PMID: 25605650. DOI: 10.1161/CIRCRESAHA.116.305834.
29 Talaat RM, Elsharnoby S, Abdelkhalek MS, et al. The impact of interferon-γ (IFN-γ) and IFN-γ-inducible protein 10 (IP-10) genes' polymorphism on risk of hepatitis C virus-related liver cirrhosis[J]. Immunol Invest, 2022, 51(3): 688-704. PMID: 33445993. DOI: 10.1080/08820139.2020.1869251.
30 Lev S, Gottesman T, Sahaf Levin G, et al. Observational cohort study of IP-10's potential as a biomarker to aid in inflammation regulation within a clinical decision support protocol for patients with severe COVID-19[J]. PLoS One, 2021, 16(1): e0245296. PMID: 33434221. PMCID: PMC7802954. DOI: 10.1371/journal.pone.0245296.
31 Sugiyama M, Kinoshita N, Ide S, et al. Serum CCL17 level becomes a predictive marker to distinguish between mild/moderate and severe/critical disease in patients with COVID-19[J]. Gene, 2021, 766: 145145. PMID: 32941953. PMCID: PMC7489253. DOI: 10.1016/j.gene.2020.145145.
32 Hsu YW, Lu HF, Chou WH, et al. Functional correlations between CXCL10/IP10 gene polymorphisms and risk of Kawasaki disease[J]. Pediatr Allergy Immunol, 2021, 32(2): 363-370. PMID: 32989803. DOI: 10.1111/pai.13381.
33 张芳霞, 龚育红, 王立琼. IP10基因rs3921及rs4386624位点多态性与川崎病的关系[J]. 中国妇幼健康研究, 2022, 33(11): 18-23. DOI: 10.3969/j.issn.1673-5293.2022.11.004.
34 Weng KP, Cheng CF, Chien KJ, et al. Identifying circulating microRNA in Kawasaki disease by next-generation sequencing approach[J]. Curr Issues Mol Biol, 2021, 43(2): 485-500. PMID: 34202375. PMCID: PMC8929010. DOI: 10.3390/cimb43020037.
35 Indrieri A, Carrella S, Carotenuto P, et al. The pervasive role of the miR-181 family in development, neurodegeneration, and cancer[J]. Int J Mol Sci, 2020, 21(6): 2092. PMID: 32197476. PMCID: PMC7139714. DOI: 10.3390/ijms21062092.
36 Fan KL, Li MF, Cui F, et al. Altered exosomal miR-181d and miR-30a related to the pathogenesis of CVB3 induced myocarditis by targeting SOCS3[J]. Eur Rev Med Pharmacol Sci, 2019, 23(5): 2208-2215. PMID: 30915768. DOI: 10.26355/eurrev_201903_17268.
37 Su XW, Lu G, Leung CK, et al. miR-181d regulates human dendritic cell maturation through NF-κB pathway[J]. Cell Prolif, 2017, 50(5): e12358. PMID: 28731516. PMCID: PMC6529105. DOI: 10.1111/cpr.12358.
38 Zhang Z, Xue Z, Liu Y, et al. MicroRNA-181c promotes Th17 cell differentiation and mediates experimental autoimmune encephalomyelitis[J]. Brain Behav Immun, 2018, 70: 305-314. PMID: 29545117. DOI: 10.1016/j.bbi.2018.03.011.
39 Rasouli M, Heidari B, Kalani M. Downregulation of Th17 cells and the related cytokines with treatment in Kawasaki disease[J]. Immunol Lett, 2014, 162(1 Pt A): 269-275. PMID: 25277751. DOI: 10.1016/j.imlet.2014.09.017.
40 Yao M, He Q, Yang M, et al. Association of miR-181c/d gene locus rs8108402 C/T polymorphism with susceptibility to Kawasaki disease in Chinese children[J]. Front Pediatr, 2022, 10: 899779. PMID: 36016885. PMCID: PMC9396029. DOI: 10.3389/fped.2022.899779.
41 姚美清, 余梦, 吴吉平, 等. miR-181a基因rs77418916位点多态性与川崎病的关联性研究[J]. 湖南师范大学学报(医学版), 2021, 18(2): 13-15. DOI: 10.3969/j.issn.1673-016X.2021.02.004.

PDF(495 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/