Abstract:Pulmonary arterial hypertension (PAH) is a severe disease characterized by abnormal pulmonary vascular remodeling and increased right ventricular pressure load, posing a significant threat to patient health. While some pathological mechanisms of PAH have been revealed, the deeper mechanisms of pathogenesis remain to be elucidated. In recent years, bioinformatics has provided a powerful tool for a deeper understanding of the complex mechanisms of PAH through the integration of techniques such as multi-omics analysis, artificial intelligence, and Mendelian randomization. This review focuses on the bioinformatics methods and technologies used in PAH research, summarizing their current applications in the study of disease mechanisms, diagnosis, and prognosis assessment. Additionally, it analyzes the existing challenges faced by bioinformatics and its potential applications in the clinical and basic research fields of PAH in the future.
Taichman DB, Leopold JA, Elliott G. Continued progress in therapy for pulmonary arterial hypertension[J]. N Engl J Med, 2023, 388(16): 1524-1526. PMID: 36876747. DOI: 10.1056/NEJMe2300324.
Austin ED, Elliott CG. TBX4 syndrome: a systemic disease highlighted by pulmonary arterial hypertension in its most severe form[J]. Eur Respir J, 2020, 55(5): 2000585. PMID: 32409426. DOI: 10.1183/13993003.00585-2020.
Gairhe S, Awad KS, Dougherty EJ, et al. Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension[J]. Proc Natl Acad Sci U S A, 2021, 118(11): e2010206118. PMID: 33836561. PMCID: PMC7980434. DOI: 10.1073/pnas.2010206118.
Best DH, Sumner KL, Smith BP, et al. EIF2AK4 mutations in patients diagnosed with pulmonary arterial hypertension[J]. Chest, 2017, 151(4): 821-828. PMID: 27884767. DOI: 10.1016/j.chest.2016.11.014.
Mondéjar-Parre?o G, Cogolludo A, Perez-Vizcaino F. Potassium (K+) channels in the pulmonary vasculature: implications in pulmonary hypertension physiological, pathophysiological and pharmacological regulation[J]. Pharmacol Ther, 2021, 225: 107835. PMID: 33744261. DOI: 10.1016/j.pharmthera.2021.107835.
Liu M, Liu Q, Pei Y, et al. Aqp-1 gene knockout attenuates hypoxic pulmonary hypertension of mice[J]. Arterioscler Thromb Vasc Biol, 2019, 39(1): 48-62. PMID: 30580569. DOI: 10.1161/ATVBAHA.118.311714.
Zhang C, Ma C, Zhang L, et al. MiR-449a-5p mediates mitochondrial dysfunction and phenotypic transition by targeting Myc in pulmonary arterial smooth muscle cells[J]. J Mol Med (Berl), 2019, 97(3): 409-422. PMID: 30715622. DOI: 10.1007/s00109-019-01751-7.
Niu Z, Fu M, Li Y, et al. Osthole alleviates pulmonary vascular remodeling by modulating microRNA-22-3p mediated lipid metabolic reprogramming[J]. Phytomedicine, 2022, 96: 153840. PMID: 34836745. DOI: 10.1016/j.phymed.2021.153840.
Iwatani N, Kubota K, Ikeda Y, et al. Different characteristics of mitochondrial dynamics-related miRNAs on the hemodynamics of pulmonary artery hypertension and chronic thromboembolic pulmonary hypertension[J]. J Cardiol, 2021, 78(1): 24-30. PMID: 33836917. DOI: 10.1016/j.jjcc.2021.03.008.
Chouvarine P, Legchenko E, Geldner J, et al. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle[J]. J Mol Med (Berl), 2019, 97(10): 1427-1438. PMID: 31338525. DOI: 10.1007/s00109-019-01817-6.
Ma H, Ye P, Zhang AK, et al. Upregulation of miR-335-5p contributes to right ventricular remodeling via calumenin in pulmonary arterial hypertension[J]. Biomed Res Int, 2022, 2022: 9294148. PMID: 36246958. PMCID: PMC9557250. DOI: 10.1155/2022/9294148.
Ma Y, Chen SS, Jiang F, et al. Bioinformatic analysis and validation of microRNA-508-3p as a protective predictor by targeting NR4A3/MEK axis in pulmonary arterial hypertension[J]. J Cell Mol Med, 2021, 25(11): 5202-5219. PMID: 33942991. PMCID: PMC8178270. DOI: 10.1111/jcmm.16523.
Bauer Y, de Bernard S, Hickey P, et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: machine learning on proteomics from the DETECT cohort[J]. Eur Respir J, 2021, 57(6): 2002591. PMID: 33334933. PMCID: PMC8276065. DOI: 10.1183/13993003.02591-2020.
Zhang GJ, Zhou YB. Artificial intelligence and machine learning in clinical medicine[J]. N Engl J Med, 2023, 388(25): 2397-2398. PMID: 37342935. DOI: 10.1056/NEJMc2305287.
Liu CM, Shih ESC, Chen JY, et al. Artificial intelligence-enabled electrocardiogram improves the diagnosis and prediction of mortality in patients with pulmonary hypertension[J]. JACC Asia, 2022, 2(3): 258-270. PMID: 36338407. PMCID: PMC9627911. DOI: 10.1016/j.jacasi.2022.02.008.
Alabed S, Alandejani F, Dwivedi K, et al. Validation of artificial intelligence cardiac MRI measurements: relationship to heart catheterization and mortality prediction[J]. Radiology, 2022, 305(1): 68-79. PMID: 35699578. PMCID: PMC9527336. DOI: 10.1148/radiol.212929.
Prohaska CC, Zhang X, Schwantes-An TL, et al. RASA3 is a candidate gene in sickle cell disease-associated pulmonary hypertension and pulmonary arterial hypertension[J]. Pulm Circ, 2023, 13(2): e12227. PMID: 37101805. PMCID: PMC10124178. DOI: 10.1002/pul2.12227.
Pu A, Ramani G, Chen YJ, et al. Identification of novel genetic variants, including PIM1 and LINC01491, with ICD-10 based diagnosis of pulmonary arterial hypertension in the UK Biobank cohort[J]. Front Drug Discov (Lausanne), 2023, 3: 1127736. PMID: 37089865. PMCID: PMC10121214. DOI: 10.3389/fddsv.2023.1127736.
Hafeez N, Kirillova A, Yue Y, et al. Single nucleotide polymorphism rs9277336 controls the nuclear alpha actinin 4-human leukocyte antigen-DPA1 axis and pulmonary endothelial pathophenotypes in pulmonary arterial hypertension[J]. J Am Heart Assoc, 2023, 12(7): e027894. PMID: 36974749. PMCID: PMC10122886. DOI: 10.1161/JAHA.122.027894.
Thomeas-McEwing V, Psotka MA, Gamazon ER, et al. Two polymorphic gene loci associated with treprostinil dose in pulmonary arterial hypertension[J]. Pharmacogenet Genomics, 2022, 32(4): 144-151. PMID: 35383711. DOI: 10.1097/FPC.0000000000000463.
Zhu N, Swietlik EM, Welch CL, et al. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH[J]. Genome Med, 2021, 13(1): 80. PMID: 33971972. PMCID: PMC8112021. DOI: 10.1186/s13073-021-00891-1.
Wang XJ, Xu XQ, Sun K, et al. Association of rare PTGIS variants with susceptibility and pulmonary vascular response in patients with idiopathic pulmonary arterial hypertension[J]. JAMA Cardiol, 2020, 5(6): 677-684. PMID: 32236489. PMCID: PMC7113838. DOI: 10.1001/jamacardio.2020.0479.
Molvin J, Jujic A, Nilsson PM, et al. A diabetes-associated genetic variant is associated with diastolic dysfunction and cardiovascular disease[J]. ESC Heart Fail, 2020, 7(1): 348-356. PMID: 31860786. PMCID: PMC7083427. DOI: 10.1002/ehf2.12573.
Ramírez J, van Duijvenboden S, Aung N, et al. Cardiovascular predictive value and genetic basis of ventricular repolarization dynamics[J]. Circ Arrhythm Electrophysiol, 2019, 12(10): e007549. PMID: 31607149. DOI: 10.1161/CIRCEP.119.007549.
Zhang M, Zeng Q, Zhou S, et al. Mendelian randomization study on causal association of IL-6 signaling with pulmonary arterial hypertension[J]. Clin Exp Hypertens, 2023, 45(1): 2183963. PMID: 36871578. DOI: 10.1080/10641963.2023.2183963.