代谢组学在儿童肠易激综合征诊治中的研究进展

陈小龙, 江米足

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (9) : 989-994.

PDF(506 KB)
HTML
PDF(506 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (9) : 989-994. DOI: 10.7499/j.issn.1008-8830.2404130
综述

代谢组学在儿童肠易激综合征诊治中的研究进展

  • 陈小龙1,2, 江米足3
作者信息 +

Research progress of metabolomics in children with irritable bowel syndrome

  • CHEN Xiao-Long, JIANG Mi-Zu.
Author information +
文章历史 +

摘要

肠易激综合征(irritable bowel syndrome, IBS)是一种常见的功能性胃肠病,主要表现为腹痛、腹泻、便秘以及消化不良等症状。由于其病因和发病机制尚不清楚,并且缺乏特异性的生物标志物,使其临床诊断和治疗仍然存在较大困难。近年来,代谢组学技术因其无创、高通量、高精度、高可重复性等特点,在疾病诊断、治疗及预后评估方面得到了广泛应用。代谢组学技术有望为IBS的生物学机制研究、诊断及治疗提供新思路和方法。该文综述近年代谢组学在IBS中的应用及研究进展,并探讨其在儿童IBS临床诊断和治疗中的潜在应用价值。

Abstract

Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by symptoms such as abdominal pain, diarrhea, constipation, and indigestion. Given its unclear etiology and pathogenesis, and the absence of specific biomarkers, clinical diagnosis and treatment of IBS continue to pose significant challenges. In recent years, metabolomics technology, known for its non-invasive, high-throughput, high-precision, and highly reproducible features, has been widely applied in the diagnosis, treatment, and prognosis of various diseases. Therefore, metabolomics technology is expected to offer novel insights and methodologies for the biological mechanism research, diagnosis, and treatment of IBS. This article reviews recent advancements in the application of metabolomics to IBS, exploring its potential value in the clinical diagnosis and treatment of children with this condition.

关键词

肠易激综合征 / 代谢组学 / 生物标志物 / 代谢通路 / 儿童

Key words

Irritable bowel syndrome / Metabolomics / Biomarker / Metabolic pathway / Child

引用本文

导出引用
陈小龙, 江米足. 代谢组学在儿童肠易激综合征诊治中的研究进展[J]. 中国当代儿科杂志. 2024, 26(9): 989-994 https://doi.org/10.7499/j.issn.1008-8830.2404130
CHEN Xiao-Long, JIANG Mi-Zu.. Research progress of metabolomics in children with irritable bowel syndrome[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(9): 989-994 https://doi.org/10.7499/j.issn.1008-8830.2404130

参考文献

1 Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV[J]. Gastroenterology, 2016, 150(6): 1262-1279.e2. PMID: 27144617. DOI: 10.1053/j.gastro.2016.02.032.
2 Benninga MA, Faure C, Hyman PE, et al. Childhood functional gastrointestinal disorders: neonate/toddler[J]. Gastroenterology, 2016. PMID: 27144631. DOI: 10.1053/j.gastro.2016.02.016.
3 Rasquin A, Di Lorenzo C, Forbes D, et al. Childhood functional gastrointestinal disorders: child/adolescent[J]. Gastroenterology, 2006, 130(5): 1527-1537. PMID: 16678566. PMCID: PMC7104693. DOI: 10.1053/j.gastro.2005.08.063.
4 Sperber AD, Dumitrascu D, Fukudo S, et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: a Rome Foundation working team literature review[J]. Gut, 2017, 66(6): 1075-1082. PMID: 26818616. DOI: 10.1136/gutjnl-2015-311240.
5 Liu R, Bao ZX, Zhao PJ, et al. Advances in the study of metabolomics and metabolites in some species interactions[J]. Molecules, 2021, 26(11): 3311. PMID: 34072976. PMCID: PMC8197931. DOI: 10.3390/molecules26113311.
6 Dunn WB, Broadhurst DI, Atherton HJ, et al. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Chem Soc Rev, 2011, 40(1): 387-426. PMID: 20717559. DOI: 10.1039/b906712b.
7 van Valkengoed IGM, Argmann C, Ghauharali-van der Vlugt K, et al. Ethnic differences in metabolite signatures and type 2 diabetes: a nested case-control analysis among people of South Asian, African and European origin[J]. Nutr Diabetes, 2017, 7(12): 300. PMID: 29259157. PMCID: PMC5865542. DOI: 10.1038/s41387-017-0003-z.
8 Elliott P, Posma JM, Chan Q, et al. Urinary metabolic signatures of human adiposity[J]. Sci Transl Med, 2015, 7(285): 285ra62. PMID: 25925681. PMCID: PMC6598200. DOI: 10.1126/scitranslmed.aaa5680.
9 Noor SO, Ridgway K, Scovell L, et al. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota[J]. BMC Gastroenterol, 2010, 10: 134. PMID: 21073731. PMCID: PMC3002299. DOI: 10.1186/1471-230X-10-134.
10 Ringel-Kulka T, Choi CH, Temas D, et al. Altered colonic bacterial fermentation as a potential pathophysiological factor in irritable bowel syndrome[J]. Am J Gastroenterol, 2015, 110(9): 1339-1346. PMID: 26303129. PMCID: PMC4983766. DOI: 10.1038/ajg.2015.220.
11 Labus JS, Dinov ID, Jiang Z, et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks[J]. Pain, 2014, 155(1): 137-149. PMID: 24076048. PMCID: PMC4100785. DOI: 10.1016/j.pain.2013.09.020.
12 Ahluwalia B, Iribarren C, Magnusson MK, et al. A distinct faecal microbiota and metabolite profile linked to bowel habits in patients with irritable bowel syndrome[J]. Cells, 2021, 10(6): 1459. PMID: 34200772. PMCID: PMC8230381. DOI: 10.3390/cells10061459.
13 Baumgartner M, Lang M, Holley H, et al. Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis[J]. Gastroenterology, 2021, 161(4): 1245-1256.e20. PMID: 34146566. PMCID: PMC8527885. DOI: 10.1053/j.gastro.2021.06.024.
14 Hu Y, Chen F, Ye H, et al. Integrative analysis of the gut microbiome and metabolome in a rat model with stress induced irritable bowel syndrome[J]. Sci Rep, 2021, 11(1): 17596. PMID: 34475489. PMCID: PMC8413334. DOI: 10.1038/s41598-021-97083-z.
15 Chen X, Hu C, Yan C, et al. Maternal separation leads to dynamic changes of visceral hypersensitivity and fecal metabolomics from childhood to adulthood[J]. Sci Rep, 2023, 13(1): 7670. PMID: 37169847. PMCID: PMC10175246. DOI: 10.1038/s41598-023-34792-7.
16 Yu LM, Zhao KJ, Wang SS, et al. Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome[J]. World J Gastroenterol, 2018, 24(8): 894-904. PMID: 29491683. PMCID: PMC5829153. DOI: 10.3748/wjg.v24.i8.894.
17 Dunlop SP, Coleman NS, Blackshaw E, et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome[J]. Clin Gastroenterol Hepatol, 2005, 3(4): 349-357. PMID: 15822040. DOI: 10.1016/s1542-3565(04)00726-8.
18 Black CJ, Burr NE, Camilleri M, et al. Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis[J]. Gut, 2020, 69(1): 74-82. PMID: 30996042. DOI: 10.1136/gutjnl-2018-318160.
19 Müller-Lissner SA, Fumagalli I, Bardhan KD, et al. Tegaserod, a 5-HT(4) receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation[J]. Aliment Pharmacol Ther, 2001, 15(10): 1655-1666. PMID: 11564007. DOI: 10.1046/j.1365-2036.2001.01094.x.
20 Barbara G, Grover M, Bercik P, et al. Rome foundation working team report on post-infection irritable bowel syndrome[J]. Gastroenterology, 2019, 156(1): 46-58.e7. PMID: 30009817. PMCID: PMC6309514. DOI: 10.1053/j.gastro.2018.07.011.
21 Noorbakhsh H, Yavarmanesh M, Mortazavi SA, et al. Metabolomics analysis revealed metabolic changes in patients with diarrhea-predominant irritable bowel syndrome and metabolic responses to a synbiotic yogurt intervention[J]. Eur J Nutr, 2019, 58(8): 3109-3119. PMID: 30392136. DOI: 10.1007/s00394-018-1855-2.
22 Keshteli AH, Madsen KL, Mandal R, et al. Comparison of the metabolomic profiles of irritable bowel syndrome patients with ulcerative colitis patients and healthy controls: new insights into pathophysiology and potential biomarkers[J]. Aliment Pharmacol Ther, 2019, 49(6): 723-732. PMID: 30706502. DOI: 10.1111/apt.15141.
23 Mujagic Z, Tigchelaar EF, Zhernakova A, et al. A novel biomarker panel for irritable bowel syndrome and the application in the general population[J]. Sci Rep, 2016, 6: 26420. PMID: 27263852. PMCID: PMC4893613. DOI: 10.1038/srep26420.
24 Le Gall G, Noor SO, Ridgway K, et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome[J]. J Proteome Res, 2011, 10(9): 4208-4218. PMID: 21761941. DOI: 10.1021/pr2003598.
25 Jeffery IB, Das A, O'Herlihy E, et al. Differences in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid malabsorption[J]. Gastroenterology, 2020, 158(4): 1016-1028.e8. PMID: 31843589. DOI: 10.1053/j.gastro.2019.11.301.
26 Ahmed I, Greenwood R, Costello Bde L, et al. An investigation of fecal volatile organic metabolites in irritable bowel syndrome[J]. PLoS One, 2013, 8(3): e58204. PMID: 23516449. PMCID: PMC3596408. DOI: 10.1371/journal.pone.0058204.
27 Tang SQ, Wang YL, Xie ZY, et al. Serum metabolic profiling of traditional Chinese medicine syndromes in patients with diarrhea-predominant irritable bowel syndrome[J]. J Integr Med, 2021, 19(3): 274-281. PMID: 33775600. DOI: 10.1016/j.joim.2021.03.002.
28 Baranska A, Mujagic Z, Smolinska A, et al. Volatile organic compounds in breath as markers for irritable bowel syndrome: a metabolomic approach[J]. Aliment Pharmacol Ther, 2016, 44(1): 45-56. PMID: 27136066. DOI: 10.1111/apt.13654.
29 Mars RAT, Yang Y, Ward T, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome[J]. Cell, 2020, 182(6): 1460-1473.e17. PMID: 32916129. PMCID: PMC8109273. DOI: 10.1016/j.cell.2020.08.007.
30 Black CJ, Staudacher HM, Ford AC. Efficacy of a low FODMAP diet in irritable bowel syndrome: systematic review and network meta-analysis[J]. Gut, 2022, 71(6): 1117-1126. PMID: 34376515. DOI: 10.1136/gutjnl-2021-325214.
31 Mujagic Z, Kasapi M, Jonkers DM, et al. Integrated fecal microbiome-metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome[J]. Gut Microbes, 2022, 14(1): 2063016. PMID: 35446234. PMCID: PMC9037519. DOI: 10.1080/19490976.2022.2063016.
32 Camilleri M. Diagnosis and treatment of irritable bowel syndrome: a review[J]. JAMA, 2021, 325(9): 865-877. PMID: 33651094. DOI: 10.1001/jama.2020.22532.
33 Tuck CJ, Abu Omar A, De Palma G, et al. Changes in signalling from faecal neuroactive metabolites following dietary modulation of IBS pain[J]. Gut, 2022. PMID: 36591617. DOI: 10.1136/gutjnl-2022-327260. Epub ahead of print.
34 Wilson B, Kanno T, Slater R, et al. Faecal and urine metabolites, but not gut microbiota, may predict response to low FODMAP diet in irritable bowel syndrome[J]. Aliment Pharmacol Ther, 2023, 58(4): 404-416. PMID: 37313992. DOI: 10.1111/apt.17609.
35 Ling X, Peng S, Zhong J, et al. Effects of Chang-Kang-Fang formula on the microbiota-gut-brain axis in rats with irritable bowel syndrome[J]. Front Pharmacol, 2022, 13: 778032. PMID: 35614949. PMCID: PMC9125359. DOI: 10.3389/fphar.2022.778032.
36 Zeber-Lubecka N, Kulecka M, Ambrozkiewicz F, et al. Limited prolonged effects of rifaximin treatment on irritable bowel syndrome-related differences in the fecal microbiome and metabolome[J]. Gut Microbes, 2016, 7(5): 397-413. PMID: 27662586. PMCID: PMC5046165. DOI: 10.1080/19490976.2016.1215805.
37 Yamamoto M, Pinto-Sanchez MI, Bercik P, et al. Metabolomics reveals elevated urinary excretion of collagen degradation and epithelial cell turnover products in irritable bowel syndrome patients[J]. Metabolomics, 2019, 15(6): 82. PMID: 31111238. DOI: 10.1007/s11306-019-1543-0.

基金

“十四五”国家重点研发计划项目(2023YFC2706500)及课题(2023YFC2706504);国家中心自主立项项目(G20A0008)。

PDF(506 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/