Glomerular filtration rate (GFR) is a critical indicator of renal function assessment, which exhibits age-dependency in children and may differ from adults under various disease conditions. In recent years, there has been a growing focus on GFR among scholars, with an increasing number of clinical studies dedicated to refining and optimizing GFR estimation to span all pediatric age groups. However, the methods and assessment equations for estimating GFR may vary under different disease conditions, affecting the accuracy and applicability of assessments. This article reviews the peculiarities of renal function in children, explores GFR measurement methods, and evaluates the application of various GFR assessment equations in pediatric clinical practice, providing a reference for clinical assessment of renal function in children.
WANG Zi-Sai, WANG Sheng-Feng, ZHAO Ming-Yi, HE Qing-Nan.
Current clinical application of glomerular filtration rate assessment methods in pediatric populations[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(9): 1002-1008 https://doi.org/10.7499/j.issn.1008-8830.2401011
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Pottel H, Bj?rk J, Rule AD, et al. Cystatin C-based equation to estimate GFR without the inclusion of race and sex[J]. N Engl J Med, 2023, 388(4): 333-343. PMID: 36720134. DOI: 10.1056/NEJMoa2203769. 2 Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race[J]. N Engl J Med, 2021, 385(19): 1737-1749. PMID: 34554658. PMCID: PMC8822996. DOI: 10.1056/NEJMoa2102953. 3 Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int, 2024, 105(4S): S117-S314. PMID: 38490803. DOI: 10.1016/j.kint.2023.10.018. 4 Schwartz GJ, Haycock GB, Edelmann CM, et al. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine[J]. Pediatrics, 1976, 58(2): 259-263. PMID: 951142. 5 Schwartz GJ, Mu?oz A, Schneider MF, et al. New equations to estimate GFR in children with CKD[J]. J Am Soc Nephrol, 2009, 20(3): 629-637. PMID: 19158356. PMCID: PMC2653687. DOI: 10.1681/ASN.2008030287. 6 De Souza VC, Rabilloud M, Cochat P, et al. Schwartz formula: is one k-coefficient adequate for all children?[J]. PLoS One, 2012, 7(12): e53439. PMID: 23285295. PMCID: PMC3532344. DOI: 10.1371/journal.pone.0053439. 7 Pierce CB, Mu?oz A, Ng DK, et al. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease[J]. Kidney Int, 2021, 99(4): 948-956. PMID: 33301749. PMCID: PMC9083470. DOI: 10.1016/j.kint.2020.10.047. 8 Pottel H, Hoste L, Dubourg L, et al. An estimated glomerular filtration rate equation for the full age spectrum[J]. Nephrol Dial Transplant, 2016, 31(5): 798-806. PMID: 26932693. PMCID: PMC4848755. DOI: 10.1093/ndt/gfv454. 9 Pottel H, Bj?rk J, Courbebaisse M, et al. Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data[J]. Ann Intern Med, 2021, 174(2): 183-191. PMID: 33166224. DOI: 10.7326/M20-4366. 10 Bj?rk J, Nyman U, Delanaye P, et al. A novel method for creatinine adjustment makes the revised Lund-Malm? GFR estimating equation applicable in children[J]. Scand J Clin Lab Invest, 2020, 80(6): 456-463. PMID: 32628043. DOI: 10.1080/00365513.2020.1774641. 11 Bj?rk J, Nyman U, Larsson A, et al. Estimation of the glomerular filtration rate in children and young adults by means of the CKD-EPI equation with age-adjusted creatinine values[J]. Kidney Int, 2021, 99(4): 940-947. PMID: 33157151. DOI: 10.1016/j.kint.2020.10.017. 12 Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula?[J]. Pediatr Nephrol, 2003, 18(10): 981-985. PMID: 12920638. DOI: 10.1007/s00467-003-1271-5. 13 Zappitelli M, Parvex P, Joseph L, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children[J]. Am J Kidney Dis, 2006, 48(2): 221-230. PMID: 16860187. DOI: 10.1053/j.ajkd.2006.04.085. 14 Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C[J]. Kidney Int, 2012, 82(4): 445-453. PMID: 22622496. PMCID: PMC3433576. DOI: 10.1038/ki.2012.169. 15 Grubb A, Horio M, Hansson LO, et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator[J]. Clin Chem, 2014, 60(7): 974-986. PMID: 24829272. DOI: 10.1373/clinchem.2013.220707. 16 Pottel H, Nyman U, Bj?rk J, et al. Extending the cystatin C based EKFC-equation to children: validation results from Europe[J]. Pediatr Nephrol, 2024, 39(4): 1177-1183. PMID: 37875730. DOI: 10.1007/s00467-023-06192-6. 17 Wang Y, Adingwupu OM, Shlipak MG, et al. Discordance between creatinine-based and cystatin C-based estimated GFR: interpretation according to performance compared to measured GFR[J]. Kidney Med, 2023, 5(10): 100710. PMID: 37753251. PMCID: PMC10518599. DOI: 10.1016/j.xkme.2023.100710. 18 Adingwupu OM, Barbosa ER, Palevsky PM, et al. Cystatin C as a GFR estimation marker in acute and chronic illness: a systematic review[J]. Kidney Med, 2023, 5(12): 100727. PMID: 37928862. PMCID: PMC10623366. DOI: 10.1016/j.xkme.2023.100727. 19 Calderon-Margalit R, Golan E, Twig G, et al. History of childhood kidney disease and risk of adult end-stage renal disease[J]. N Engl J Med, 2018, 378(5): 428-438. PMID: 29385364. DOI: 10.1056/NEJMoa1700993. 20 中华医学会儿科学分会肾脏学组, 中华儿科杂志编辑委员会. 中国儿童慢性肾脏病早期筛查临床实践指南(2021版)[J]. 中华儿科杂志, 2022, 60(9): 858-868. PMID: 36038293. DOI: 10.3760/cma.j.cn112140-20220714-00647. 21 匡仟卉柠, 高春林, 夏正坤. 肾小球滤过率估算方程在慢性肾脏病儿童中的应用比较[J]. 临床肾脏病杂志, 2023, 23(2): 98-104. DOI: 10.3969/j.issn.1671-2390.2023.02.003. 22 Tang Y, Hou L, Sun T, et al. Improved equations to estimate GFR in Chinese children with chronic kidney disease[J]. Pediatr Nephrol, 2023, 38(1): 237-247. PMID: 35467153. DOI: 10.1007/s00467-022-05552-y. 23 陈楷柠, 杜悦. 肾小球滤过率公式在中国慢性肾脏病儿童中的应用[J]. 肾脏病与透析肾移植杂志, 2023, 32(2): 107-114. DOI: 10.3969/j.issn.1006-298X.2023.02.002. 24 Raina R, Herrera N, Krishnappa V, et al. Hematopoietic stem cell transplantation and acute kidney injury in children: a comprehensive review[J]. Pediatr Transplant, 2017, 21(4): e12935. PMID: 28485097. DOI: 10.1111/petr.12935. 25 Green DM, Wang M, Krasin M, et al. Kidney function after treatment for childhood cancer: a report from the St. Jude lifetime cohort study[J]. J Am Soc Nephrol, 2021, 32(4): 983-993. PMID: 33653686. PMCID: PMC8017532. DOI: 10.1681/ASN.2020060849. 26 Bernhardt MB, Moffett BS, Johnson M, et al. Agreement among measurements and estimations of glomerular filtration in children with cancer[J]. Pediatr Blood Cancer, 2015, 62(1): 80-84. PMID: 25263332. DOI: 10.1002/pbc.25194. 27 Williams GR, Dunne RF, Giri S, et al. Sarcopenia in the older adult with cancer[J]. J Clin Oncol, 2021, 39(19): 2068-2078. PMID: 34043430. PMCID: PMC8260902. DOI: 10.1200/JCO.21.00102. 28 Hanna PE, Ouyang TQ, Tahir I, et al. Sarcopenia, adiposity, and discrepancies in cystatin C versus creatinine-based eGFR in patients with cancer: a cross-sectional study[J]. medRxiv[Preprint]. (2023-02-10) [2023-11-28]. DOI: 10.1101/2023.02.08.23285587. 29 Latcha S. Serum cystatin C level can be used to estimate GFR in patients with solid tumors: CON[J]. J Onco-Nephrol, 2022, 6(3): 115-118. DOI: 10.1177/23993693221119216. 30 Lambert M, Alonso M, Munzer C, et al. Prospective validation of an equation based on plasma cystatin C for monitoring the glomerular filtration rate in children treated with cisplatin or ifosfamide for cancer[J]. Cancer Chemother Pharmacol, 2024, 93(4): 393-395. PMID: 37789166. DOI: 10.1007/s00280-023-04597-6. 31 Lambert M, White-Koning M, Alonso M, et al. Plasma cystatin C is a marker of renal glomerular injury in children treated with cisplatin or ifosfamide[J]. Pediatr Blood Cancer, 2021, 68(1): e28747. PMID: 33058496. DOI: 10.1002/pbc.28747. 32 Costa E Silva VT, Gil LA, Inker LA, et al. A prospective cross-sectional study estimated glomerular filtration rate from creatinine and cystatin C in adults with solid tumors[J]. Kidney Int, 2022, 101(3): 607-614. PMID: 35032521. DOI: 10.1016/j.kint.2021.12.010. 33 Thapaliya S, Sung AJ, Sharp SE, et al. Agreement between serum estimates of glomerular filtration rate (GFR) and a reference standard of radioisotopic GFR in children with cancer[J]. Pediatr Radiol, 2022, 52(5): 903-909. PMID: 35031855. DOI: 10.1007/s00247-021-05261-y. 34 Lister NB, Baur LA, Felix JF, et al. Child and adolescent obesity[J]. Nat Rev Dis Primers, 2023, 9(1): 24. PMID: 37202378. DOI: 10.1038/s41572-023-00435-4. 35 Magen D, Halloun R, Galderisi A, et al. Relation of glomerular filtration to insulin resistance and related risk factors in obese children[J]. Int J Obes (Lond), 2022, 46(2): 374-380. PMID: 34725443. DOI: 10.1038/s41366-021-01001-2. 36 Stern-Zimmer M, Calderon-Margalit R, Skorecki K, et al. Childhood risk factors for adulthood chronic kidney disease[J]. Pediatr Nephrol, 2021, 36(6): 1387-1396. PMID: 32500249. DOI: 10.1007/s00467-020-04611-6. 37 Morato M, Correia-Costa L, Sousa T, et al. Longer duration of obesity is associated with a reduction in urinary angiotensinogen in prepubertal children[J]. Pediatr Nephrol, 2017, 32(8): 1411-1422. PMID: 28337615. DOI: 10.1007/s00467-017-3639-y. 38 van Dam MJCM, Pottel H, Vreugdenhil ACE. Creatinine-based GFR-estimating equations in children with overweight and obesity[J]. Pediatr Nephrol, 2022, 37(10): 2393-2403. PMID: 35211793. PMCID: PMC9395456. DOI: 10.1007/s00467-021-05396-y. 39 ?nerli Salman D, ??klar Z, ?ullas ?larslan EN, et al. Evaluation of renal function in obese children and adolescents using serum cystatin C levels, estimated glomerular filtration rate formulae and proteinuria: which is most useful?[J]. J Clin Res Pediatr Endocrinol, 2019, 11(1): 46-54. PMID: 30145854. PMCID: PMC6398183. DOI: 10.4274/jcrpe.galenos.2018.2018.0046. 40 Dart AB, McGavock J, Sharma A, et al. Estimating glomerular filtration rate in youth with obesity and type 2 diabetes: the iCARE study equation[J]. Pediatr Nephrol, 2019, 34(9): 1565-1574. PMID: 31049718. DOI: 10.1007/s00467-019-04250-6. 41 Dedual MA, Wueest S, Challa TD, et al. Obesity-induced increase in cystatin C alleviates tissue inflammation[J]. Diabetes, 2020, 69(9): 1927-1935. PMID: 32616516. DOI: 10.2337/db19-1206. 42 Laucyte-Cibulskiene A, Nilsson PM, Engstr?m G, et al. Increased fat mass index is associated with decreased glomerular filtration rate estimated from cystatin C. Data from Malm? Diet and Cancer cohort[J]. PLoS One, 2022, 17(7): e0271638. PMID: 35862349. PMCID: PMC9302820. DOI: 10.1371/journal.pone.0271638. 43 Rague JT, Lai JD, Murphy P, et al. Variation in definitions of kidney abnormality in patients with spina bifida: a systematic scoping review[J]. J Urol, 2022, 207(6): 1184-1192. PMID: 35050700. PMCID: PMC9086084. DOI: 10.1097/JU.0000000000002432. 44 Morrow AK, Zabel TA, Dodson J, et al. Comparing cystatin C- and creatinine-estimated glomerular filtration rates in patients with thoracic versus sacral motor levels of spina bifida[J]. Am J Phys Med Rehabil, 2022, 101(2): 139-144. PMID: 35026776. DOI: 10.1097/PHM.0000000000001756. 45 Menezes C, Costa T, Brás C, et al. Estimating the glomerular filtration rate in pediatric patients with neurogenic bladder: a comparison between creatinine- and cystatin C-equations[J]. Cureus, 2023, 15(7): e42337. PMID: 37614257. PMCID: PMC10444205. DOI: 10.7759/cureus.42337. 46 Chu DI, Balmert LC, Arkin CM, et al. Estimated kidney function in children and young adults with spina bifida: a retrospective cohort study[J]. Neurourol Urodyn, 2019, 38(7): 1907-1914. PMID: 31286557. PMCID: PMC6706288. DOI: 10.1002/nau.24092. 47 Shen CL, Liebstein D, Fernandez H. Malnutrition and protein energy wasting are associated with severity and progression of pediatric chronic kidney disease[J]. Pediatr Nephrol, 2024, 39(1): 243-250. PMID: 37464056. DOI: 10.1007/s00467-023-06078-7. 48 Tutupoho RV, Asmaningsih N, Prasetyo RV. Association of malnutrition with renal function in children with kidney disease[J]. GSC Biol Pharm Sci, 2021, 17(3): 100-106. DOI: 10.30574/gscbps.2021.17.3.0354. 49 Hari P, Bagga A, Mahajan P, et al. Effect of malnutrition on serum creatinine and cystatin C levels[J]. Pediatr Nephrol, 2007, 22(10): 1757-1761. PMID: 17668246. DOI: 10.1007/s00467-007-0535-x. 50 Braat E, Hoste L, De Waele L, et al. Renal function in children and adolescents with Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2015, 25(5): 381-387. PMID: 25683700. DOI: 10.1016/j.nmd.2015.01.005. 51 Screever EM, Kootstra-Ros JE, Doorn J, et al. Kidney function in patients with neuromuscular disease: creatinine versus cystatin C[J]. Front Neurol, 2021, 12: 688246. PMID: 34630276. PMCID: PMC8498206. DOI: 10.3389/fneur.2021.688246. 52 Hofstra JM, Willems JL, Wetzels JF. Estimated glomerular filtration rate in the nephrotic syndrome[J]. Nephrol Dial Transplant, 2011, 26(2): 550-556. PMID: 20660475. DOI: 10.1093/ndt/gfq443. 53 Chen S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely[J]. J Am Soc Nephrol, 2013, 24(6): 877-888. PMID: 23704286. DOI: 10.1681/ASN.2012070653. 54 Dasgupta MN, Montez-Rath ME, Hollander SA, et al. Using kinetic eGFR to identify acute kidney injury risk in children undergoing cardiac transplantation[J]. Pediatr Res, 2021, 90(3): 632-636. PMID: 33446916. DOI: 10.1038/s41390-020-01307-3. 55 Menon S, Basu RK, Barhight MF, et al. Utility of kinetic GFR for predicting severe persistent AKI in critically ill children and young adults[J]. Kidney360, 2021, 2(5): 869-872. PMID: 35373066. PMCID: PMC8791351. DOI: 10.34067/KID.0006892020. 56 Desgrouas M, Merdji H, Bretagnol A, et al. Kinetic glomerular filtration rate equations in patients with shock: comparison with the iohexol-based gold-standard method[J]. Crit Care Med, 2021, 49(8): e761-e770. PMID: 33710029. DOI: 10.1097/CCM.0000000000004946.