Abstract:Late-onset sepsis (LOS) is commonly seen in neonates who are hospitalized for extended periods, particularly in very low birth weight infants (VLBWI) and extremely low birth weight infants (ELBWI). Currently, the management of LOS in preterm infants faces dual challenges of delayed diagnosis and treatment, as well as antibiotic overtreatment. To address these issues, the Hunan Neonatal Medical Quality Control Center and the Neonatology Group of Perinatal Medical Committee of Hunan Medical Association organized a group of neonatal experts from Hunan Province to formulate recommendations based on published literature and statistical data from the Hunan Neonatal Medical Quality Control Center, as well as real-world practices in most neonatal intensive care units in Hunan Province. The group of neonatal experts proposed 15 recommendations for the diagnosis and antibiotic treatment of LOS in hospitalized preterm infants in the neonatal intensive care unit.
. Recommendations for antibiotic use in hospitalized preterm infants with late-onset sepsis in the neonatal intensive care unit[J]. CJCP, 2024, 26(10): 1009-1018.
Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals[J]. Lancet, 2016, 388(10063): 3027-3035. PMID: 27839855. PMCID: PMC5161777. DOI: 10.1016/S0140-6736(16)31593-8.
Yang M, Peng Z, van Pul C, et al. Continuous prediction and clinical alarm management of late-onset sepsis in preterm infants using vital signs from a patient monitor[J]. Comput Methods Programs Biomed, 2024, 255: 108335. PMID: 39047574. DOI: 10.1016/j.cmpb.2024.108335.
Scheer CS, Fuchs C, Gründling M, et al. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study[J]. Clin Microbiol Infect, 2019, 25(3): 326-331. PMID: 29879482. DOI: 10.1016/j.cmi.2018.05.016.
Rand KH, Beal SG, Rivera K, et al. Hourly effect of pretreatment with IV antibiotics on blood culture positivity rate in emergency department patients[J]. Open Forum Infect Dis, 2019, 6(5): ofz179. PMID: 31139670. PMCID: PMC6527085. DOI: 10.1093/ofid/ofz179.
Stoll BJ, Hansen N, Fanaroff AA, et al. To tap or not to tap: high likelihood of meningitis without sepsis among very low birth weight infants[J]. Pediatrics, 2004, 113(5): 1181-1186. PMID: 15121927. DOI: 10.1542/peds.113.5.1181.
Kanegaye JT, Soliemanzadeh P, Bradley JS. Lumbar puncture in pediatric bacterial meningitis: defining the time interval for recovery of cerebrospinal fluid pathogens after parenteral antibiotic pretreatment[J]. Pediatrics, 2001, 108(5): 1169-1174. PMID: 11694698.
Weitkamp JH, Aschner JL, Carlo WA, et al. Meningitis, urinary tract, and bloodstream infections in very low birth weight infants enrolled in a heart rate characteristics monitoring trial[J]. Pediatr Res, 2020, 87(7): 1226-1230. PMID: 31801155. PMCID: PMC7255929. DOI: 10.1038/s41390-019-0701-4.
Paul SP, Khattak H, Kini PK, et al. NICE guideline review: neonatal infection: antibiotics for prevention and treatment (NG195)[J]. Arch Dis Child Educ Pract Ed, 2022, 107(4): 292-297. PMID: 34772670. DOI: 10.1136/archdischild-2021-322349.
Downey LC, Benjamin DK, Clark RH, et al. Urinary tract infection concordance with positive blood and cerebrospinal fluid cultures in the neonatal intensive care unit[J]. J Perinatol, 2013, 33(4): 302-306. PMID: 22935772. PMCID: PMC3549035. DOI: 10.1038/jp.2012.111.
Berenguer J, Buck M, Witebsky F, et al. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection[J]. Diagn Microbiol Infect Dis, 1993, 17(2): 103-109. PMID: 8243032. DOI: 10.1016/0732-8893(93)90020-8.
Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality[J]. Antimicrob Agents Chemother, 2005, 49(9): 3640-3645. PMID: 16127033. PMCID: PMC1195428. DOI: 10.1128/AAC.49.9.3640-3645.2005.
20 Centre for Disease Control and Prevention. Late onset sepsis/Meningitis event[EB/OL]. [2024-05-06]. https://www.cdc.gov/nhsn/pdfs/neonatal/losmen/los-men-protocol-508.pdf.
Stoll BJ, Hansen N, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network[J]. Pediatrics, 2002, 110(2 Pt 1): 285-291. PMID: 12165580. DOI: 10.1542/peds.110.2.285.
Vergnano S, Menson E, Kennea N, et al. Neonatal infections in England: the NeonIN surveillance network[J]. Arch Dis Child Fetal Neonatal Ed, 2011, 96(1): F9-F14. PMID: 20876594. DOI: 10.1136/adc.2009.178798.
23 Vermont Oxford Network. Global Health Neonatal Quality Improvement Database:Data Definitions & Infant Data Sheet forms[EB/OL]. [2024-08-01]. https://vtoxford.zendesk.com/hc/article_attachments/32169421969043.
24 The Canadian Neonatal NetworkTM. The Canadian neonatal network annual report 2022[EB/OL]. [2024-05-06].
McGovern M, Giannoni E, Kuester H, et al. Challenges in developing a consensus definition of neonatal sepsis[J]. Pediatr Res, 2020, 88(1): 14-26. PMID: 32126571. DOI: 10.1038/s41390-020-0785-x.
Glaser MA, Hughes LM, Jnah A, et al. Neonatal sepsis: a review of pathophysiology and current management strategies[J]. Adv Neonatal Care, 2021, 21(1): 49-60. PMID: 32956076. DOI: 10.1097/ANC.0000000000000769.
Stocker M, van Herk W, El Helou S, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns)[J]. Lancet, 2017, 390(10097): 871-881. PMID: 28711318. DOI: 10.1016/S0140-6736(17)31444-7.
Benitz WE, Han MY, Madan A, et al. Serial serum C-reactive protein levels in the diagnosis of neonatal infection[J]. Pediatrics, 1998, 102(4): E41. PMID: 9755278. DOI: 10.1542/peds.102.4.e41.
Eschborn S, Weitkamp JH. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis[J]. J Perinatol, 2019, 39(7): 893-903. PMID: 30926891. DOI: 10.1038/s41372-019-0363-4.
K?stlin-Gille N, H?rtel C, Haug C, et al. Epidemiology of early and late onset neonatal sepsis in very low birthweight infants: data from the German neonatal network[J]. Pediatr Infect Dis J, 2021, 40(3): 255-259. PMID: 33538544. DOI: 10.1097/INF.0000000000002976.
Goldstein ND, Eppes SC, Ingraham BC, et al. Characteristics of late-onset sepsis in the NICU: does occupancy impact risk of infection?[J]. J Perinatol, 2016, 36(9): 753-757. PMID: 27149054. DOI: 10.1038/jp.2016.71.
Tsai MH, Hsu JF, Chu SM, et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis[J]. Pediatr Infect Dis J, 2014, 33(1): e7-e13. PMID: 23899966. DOI: 10.1097/INF.0b013e3182a72ee0.
Jiang S, Yang C, Yang C, et al. Epidemiology and microbiology of late-onset sepsis among preterm infants in China, 2015-2018: a cohort study[J]. Int J Infect Dis, 2020, 96: 1-9. PMID: 32209419. DOI: 10.1016/j.ijid.2020.03.034.
Cantey JB, Anderson KR, Kalagiri RR, et al. Morbidity and mortality of coagulase-negative staphylococcal sepsis in very-low-birth-weight infants[J]. World J Pediatr, 2018, 14(3): 269-273. PMID: 29536341. DOI: 10.1007/s12519-018-0145-7.
Yu YQ, He XR, Wan LJ, et al. Etiology, antimicrobial resistance, and risk factors of neonatal sepsis in China: a systematic review and meta-analysis from data of 30 years[J]. J Matern Fetal Neonatal Med, 2022, 35(25): 7541-7550. PMID: 34470123. DOI: 10.1080/14767058.2021.1951217.
Liu J, Fang Z, Yu Y, et al. Pathogens distribution and antimicrobial resistance in bloodstream infections in twenty-five neonatal intensive care units in China, 2017-2019[J]. Antimicrob Resist Infect Control, 2021, 10(1): 121. PMID: 34399840. PMCID: PMC8365905. DOI: 10.1186/s13756-021-00989-6.
Dong Y, Glaser K, Speer CP. Late-onset sepsis caused by gram-negative bacteria in very low birth weight infants: a systematic review[J]. Expert Rev Anti Infect Ther, 2019, 17(3): 177-188. PMID: 30640556. DOI: 10.1080/14787210.2019.1568871.
Romanelli RM, Anchieta LM, Bueno E Silva AC, et al. Empirical antimicrobial therapy for late-onset sepsis in a neonatal unit with high prevalence of coagulase-negative Staphylococcus[J]. J Pediatr (Rio J), 2016, 92(5): 472-478. PMID: 27112033. DOI: 10.1016/j.jped.2016.01.008.
Hemels MA, van den Hoogen A, Verboon-Maciolek MA, et al. A seven-year survey of management of coagulase-negative staphylococcal sepsis in the neonatal intensive care unit: vancomycin may not be necessary as empiric therapy[J]. Neonatology, 2011, 100(2): 180-185. PMID: 21455008. DOI: 10.1159/000324852.
Patel SJ, Oshodi A, Prasad P, et al. Antibiotic use in neonatal intensive care units and adherence with centers for disease control and prevention 12 step campaign to prevent antimicrobial resistance[J]. Pediatr Infect Dis J, 2009, 28(12): 1047-1051. PMID: 19858773. PMCID: PMC4526135. DOI: 10.1097/INF.0b013e3181b12484.
Chen Q, Wan J, Shen W, et al. Optimal exposure targets for vancomycin in the treatment of neonatal coagulase-negative Staphylococcus infection: a retrospective study based on electronic medical records[J]. Pediatr Neonatol, 2022, 63(3): 247-254. PMID: 35190273. DOI: 10.1016/j.pedneo.2021.11.010.
Schmatz M, Srinivasan L, Grundmeier RW, et al. Surviving sepsis in a referral neonatal intensive care unit: association between time to antibiotic administration and in-hospital outcomes[J]. J Pediatr, 2020, 217: 59-65.e1. PMID: 31604632. DOI: 10.1016/j.jpeds.2019.08.023.
Meem M, Modak JK, Mortuza R, et al. Biomarkers for diagnosis of neonatal infections: a systematic analysis of their potential as a point-of-care diagnostics[J]. J Glob Health, 2011, 1(2): 201-209. PMID: 23198119. PMCID: PMC3484777.
Bromiker R, Elron E, Klinger G. Do neonatal infections require a positive blood culture?[J]. Am J Perinatol, 2020, 37(S 02): S18-S21. PMID: 32898878. DOI: 10.1055/s-0040-1714079.