Diagnostic efficacy of serum 14-3-3β protein combined with fractional exhaled nitric oxide and conventional ventilatory lung function parameters for bronchial asthma in children

LI Shu-Fang, GUO Guang-En, YANG Yue-Qin, XIONG Xiao-Man, ZHENG Shi-Wei, XIE Xue-Li, ZHANG Yan-Li

Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (7) : 723-729.

PDF(628 KB)
PDF(628 KB)
Chinese Journal of Contemporary Pediatrics ›› 2024, Vol. 26 ›› Issue (7) : 723-729. DOI: 10.7499/j.issn.1008-8830.2401058
CLINICAL RESEARCH

Diagnostic efficacy of serum 14-3-3β protein combined with fractional exhaled nitric oxide and conventional ventilatory lung function parameters for bronchial asthma in children

  • LI Shu-Fang, GUO Guang-En, YANG Yue-Qin, XIONG Xiao-Man, ZHENG Shi-Wei, XIE Xue-Li, ZHANG Yan-Li
Author information +
History +

Abstract

Objective To explore the diagnostic efficacy of serum 14-3-3β protein combined with fractional exhaled nitric oxide (FeNO) and conventional ventilatory lung function parameters in diagnosing bronchial asthma (referred to as "asthma") in children. Methods A prospective study included 136 children initially diagnosed with asthma during an acute episode as the asthma group, and 85 healthy children undergoing routine health checks as the control group. The study compared the differences in serum 14-3-3β protein concentrations between the two groups, analyzed the correlation of serum 14-3-3β protein with clinical indices, and evaluated the diagnostic efficacy of combining 14-3-3β protein, FeNO, and conventional ventilatory lung function parameters for asthma in children. Results The concentration of serum 14-3-3β protein was higher in the asthma group than in the control group (P<0.001). Serum 14-3-3β protein showed a positive correlation with the percentage of neutrophils and total serum immunoglobulin E, and a negative correlation with conventional ventilatory lung function parameters (P<0.05). Cross-validation of combined indices showed that the combination of 14-3-3β protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume had an area under the curve of 0.948 for predicting asthma, with a sensitivity and specificity of 88.9% and 93.7%, respectively, demonstrating good diagnostic efficacy (P<0.001). The model had the best extrapolation. Conclusions The combination of serum 14-3-3β protein, FeNO, and the percentage of predicted value of forced expiratory flow at 75% of lung volume can significantly improve the diagnostic efficacy for asthma in children. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 723-729

Key words

Bronchial asthma / 14-3-3β protein / Combined diagnosis / Lung ventilatory function / Exhaled nitric oxide / Child

Cite this article

Download Citations
LI Shu-Fang, GUO Guang-En, YANG Yue-Qin, XIONG Xiao-Man, ZHENG Shi-Wei, XIE Xue-Li, ZHANG Yan-Li. Diagnostic efficacy of serum 14-3-3β protein combined with fractional exhaled nitric oxide and conventional ventilatory lung function parameters for bronchial asthma in children[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(7): 723-729 https://doi.org/10.7499/j.issn.1008-8830.2401058

References

1 Porsbjerg C, Melén E, Lehtim?ki L, et al. Asthma[J]. Lancet, 2023, 401(10379): 858-873. PMID: 36682372. DOI: 10.1016/S0140-6736(22)02125-0.
2 Asher MI, García-Marcos L, Pearce NE, et al. Trends in worldwide asthma prevalence[J]. Eur Respir J, 2020, 56(6): 2002094. PMID: 32972987. DOI: 10.1183/13993003.02094-2020.
3 Asher MI, Rutter CE, Bissell K, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study[J]. Lancet, 2021, 398(10311): 1569-1580. PMID: 34755626. PMCID: PMC8573635. DOI: 10.1016/S0140-6736(21)01450-1.
4 Martin J, Townshend J, Brodlie M. Diagnosis and management of asthma in children[J]. BMJ Paediatr Open, 2022, 6(1): e001277. PMID: 35648804. PMCID: PMC9045042. DOI: 10.1136/bmjpo-2021-001277.
5 刘开来. 呼出气一氧化氮、总免疫球蛋白E及血嗜酸性粒细胞在儿童哮喘诊断中的价值[J]. 中国中西医结合儿科学, 2023, 15(3): 224-228. DOI: 10.3969/j.issn.1674-3865.2023.03.010.
6 Loewenthal L, Menzies-Gow A. FeNO in asthma[J]. Semin Respir Crit Care Med, 2022, 43(5): 635-645. PMID: 35253144. DOI: 10.1055/s-0042-1743290.
7 Fraser A, Simpson R, Turner S. Use of exhaled nitric oxide in the diagnosis and monitoring of childhood asthma: myth or maxim?[J]. Breathe (Sheff), 2023, 19(4): 220236. PMID: 38125803. PMCID: PMC10729813. DOI: 10.1183/20734735.0236-2022.
8 Breiteneder H, Peng YQ, Agache I, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma[J]. Allergy, 2020, 75(12): 3039-3068. PMID: 32893900. PMCID: PMC7756301. DOI: 10.1111/all.14582.
9 Wang W, Shakes DC. Molecular evolution of the 14-3-3 protein family[J]. J Mol Evol, 1996, 43(4): 384-398. PMID: 8798343. DOI: 10.1007/BF02339012.
10 Asdaghi N, Kilani RT, Hosseini-Tabatabaei A, et al. Extracellular 14-3-3 from human lung epithelial cells enhances MMP-1 expression[J]. Mol Cell Biochem, 2012, 360(1-2): 261-270. PMID: 21948273. DOI: 10.1007/s11010-011-1065-1.
11 何淑娟, 陈雅, 童夏生, 等. 布地奈德对哮喘大鼠肺组织14-3-3蛋白及14-3-3β mRNA表达的影响[J]. 儿科药学杂志, 2016, 22(6): 5-7. DOI: 10.13407/j.cnki.jpp.1672-108X.2016.06.002.
12 Wang D, Rao L, Cui Y, et al. Serum 14-3-3β protein: a new biomarker in asthmatic patients with acute exacerbation in an observational study[J]. Allergy Asthma Clin Immunol, 2021, 17(1): 104. PMID: 34627360. PMCID: PMC8502409. DOI: 10.1186/s13223-021-00608-4.
13 中华儿科杂志编辑委员会, 中华医学会儿科学分会呼吸学组, 中国医师协会儿科医师分会儿童呼吸专业委员会. 儿童支气管哮喘规范化诊治建议(2020年版)[J]. 中华儿科杂志, 2020, 58(9): 708-717. PMID: 32872710. DOI:10.3760/cma.j.cn112140-20200604-00578.
14 Beydon N, Davis SD, Lombardi E, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children[J]. Am J Respir Crit Care Med, 2007, 175(12): 1304-1345. PMID: 17545458. DOI: 10.1164/rccm.200605-642ST.
15 American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005[J]. Am J Respir Crit Care Med, 2005, 171(8): 912-930. PMID: 15817806. DOI: 10.1164/rccm.200406-710ST.
16 He X, Frey E. ROC, LROC, FROC, AFROC: an alphabet soup[J]. J Am Coll Radiol, 2009, 6(9): 652-655. PMID: 19720362. DOI: 10.1016/j.jacr.2009.06.001.
17 Jutel M, Mosnaim GS, Bernstein JA, et al. The one health approach for allergic diseases and asthma[J]. Allergy, 2023, 78(7): 1777-1793. PMID: 37119496. DOI: 10.1111/all.15755.
18 Pelaia C, Vatrella A, Crimi C, et al. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma[J]. Expert Rev Respir Med, 2020, 14(5): 501-510. PMID: 32098546. DOI: 10.1080/17476348.2020.1735365.
19 Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation[J]. Annu Rev Pharmacol Toxicol, 2000, 40: 617-647. PMID: 10836149. DOI: 10.1146/annurev.pharmtox.40.1.617.
20 Kataki A, Karagiannidis I, Memos N, et al. Host's endogenous caveolin-1 expression is downregulated in the lung during sepsis to promote cytoprotection[J]. Shock, 2018, 50(2): 199-208. PMID: 28957875. DOI: 10.1097/SHK.0000000000001005.
21 Fainardi V, Esposito S, Chetta A, et al. Asthma phenotypes and endotypes in childhood[J]. Minerva Med, 2022, 113(1): 94-105. PMID: 33576199. DOI: 10.23736/S0026-4806.21.07332-8.
22 Shilovskiy IP, Kovchina VI, Timotievich ED, et al. Role and molecular mechanisms of alternative splicing of Th2-cytokines IL-4 and IL-5 in atopic bronchial asthma[J]. Biochemistry (Mosc), 2023, 88(10): 1608-1621. PMID: 38105028. DOI: 10.1134/S0006297923100152.
23 Li F, Huang Y, Huang YY, et al. MicroRNA-146a promotes IgE class switch in B cells via upregulating 14-3-3σ expression[J]. Mol Immunol, 2017, 92: 180-189. PMID: 29101850. DOI: 10.1016/j.molimm.2017.10.023.
24 Hong L, Herjan T, Bulek K, et al. Mechanisms of corticosteroid resistance in type 17 asthma[J]. J Immunol, 2022, 209(10): 1860-1869. PMID: 36426949. PMCID: PMC9666330. DOI: 10.4049/jimmunol.2200288.
25 Jo A, Kim DW. Neutrophil extracellular traps in airway diseases: pathological roles and therapeutic implications[J]. Int J Mol Sci, 2023, 24(5): 5034. PMID: 36902466. PMCID: PMC10003347. DOI: 10.3390/ijms24055034.
26 Flinkman E, V?h?talo I, Tuomisto LE, et al. Association between blood eosinophils and neutrophils with clinical features in adult-onset asthma[J]. J Allergy Clin Immunol Pract, 2023, 11(3): 811-821.e5. PMID: 36473624. DOI: 10.1016/j.jaip.2022.11.025.
27 Wang D, Rao L, Lei H, et al. Clinical significance of serum levels of 14-3-3β protein in patients with stable chronic obstructive pulmonary disease[J]. Sci Rep, 2023, 13(1): 4861. PMID: 36964173. PMCID: PMC10039013. DOI: 10.1038/s41598-023-32096-4.
28 Gao K, Tang W, Li Y, et al. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils[J]. J Cell Sci, 2015, 128(5): 992-1000. PMID: 25588844. PMCID: PMC4342581. DOI: 10.1242/jcs.161497.
29 Jendzjowsky NG, Kelly MM. The role of airway myofibroblasts in asthma[J]. Chest, 2019, 156(6): 1254-1267. PMID: 31472157. DOI: 10.1016/j.chest.2019.08.1917.
30 Li J, Gong X. 14-3-3β is necessary in the regulation of polarization and directional migration of alveolar myofibroblasts by lipopolysaccharide[J]. Exp Lung Res, 2020, 46(1/2): 1-10. PMID: 31920140. DOI: 10.1080/01902148.2019.1711464.
31 Global Initiative for Asthma. Pocket guide for asthma management and prevention[EB/OL]. [2023-12-22]. https://ginasthma. org/pocket-guide-for-asthma-management-and-preven-tion/.
32 Comberiati P, McCormack K, Malka-Rais J, et al. Proportion of severe asthma patients eligible for mepolizumab therapy by age and age of onset of asthma[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2689-2696.e2. PMID: 31201938. DOI: 10.1016/j.jaip.2019.05.053.
33 Cottini M, Lombardi C, Berti A, et al. Small-airway dysfunction in paediatric asthma[J]. Curr Opin Allergy Clin Immunol, 2021, 21(2): 128-134. PMID: 33620881. DOI: 10.1097/ACI.0000000000000728.
34 Calzetta L, Aiello M, Frizzelli A, et al. Small airways in asthma: from bench-to-bedside[J]. Minerva Med, 2022, 113(1): 79-93. PMID: 33496163. DOI: 10.23736/S0026-4806.21.07268-2.
PDF(628 KB)

Accesses

Citation

Detail

Sections
Recommended

/