Abstract Bronchopulmonary dysplasia (BPD) is the most common long-term complication in surviving extremely preterm infants. This may lead to pulmonary hypertension, increase late neonatal mortality, and cause abnormal neural development. There is still controversy over the efficacy, as well as advantages and disadvantages, of drug therapy for BPD in preterm infants. This article reviews the research progress in the drug therapy for BPD.
Krishnan U, Feinstein JA, Adatia I, et al. Evaluation and management of pulmonary hypertension in children with bronchopulmonary dysplasia[J]. J Pediatr, 2017, 188:24-34.e1.
[2]
Abman SH, Hansmann G, Archer SL, et al. Pediatric pulmonary hypertension:Guidelines from the American Heart Association and American Thoracic Society[J]. Circulation, 2015, 132(21):2037-2099.
[3]
Collaco JM, Romer LH, Stuart BD, et al. Frontiers in pulmonary hypertension in infants and children with bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2012, 47(11):1042-1053.
[4]
Vohr BR, Stephens BE, Higgins RD, et al. Are outcomes of extremely preterm infants improving? Impact of bayley assessment on outcomes[J]. J Pediatr, 2012, 161(2):222-228.e3.
Halliday HL, Ehrenkranz RA, Doyle LW. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants[J]. Cochrane Database Syst Rev, 2009, (1)CD001146.
[7]
Onland W, De Jaegere AP, Offringa M, et al. Systemic corticosteroid regimens for prevention of bronchopulmonary dysplasia in preterm infants[J]. Cochrane Database Syst Rev, 20171:CD010941.
[8]
Baud O, Trousson C, Biran V, et al. Association between early low-dose hydrocortisone therapy in extremely preterm neonates and neuro developmental outcomes at 2 years of age[J]. JAMA, 2017, 317(13):1329-1337.
[9]
Patra K, Greene MM, Silvestri JM. Neurodevelopmental impact of hydrocortisone exposure in extremely low birth weight infants:outcomes at 1 and 2 years[J]. J Perinatol, 2015, 35(1):77-81.
[10]
Kelly EN, Shah VS, Levenbach J, et al. Inhaled and systemic steroid exposure and neurodevelopmental outcome of preterm neonates[J]. J Matern Fetal Neonatal Med, 2017, 16:1-8.
[11]
Slaughter JL, Stenger MR, Reagan PB, et al. Utilization of inhaled corticosteroids for infants with bronchopulmonary dysplasia[J]. PLoS One, 2014, 9(9):e106838.
[12]
Shinwell ES, Portnov I, Meerpohl JJ, et al. Inhaled corticosteroids for bronchopulmonary dysplasia:A Meta-analysis[J]. Pediatrics, 2016, 138(6):e20162511.
[13]
Onland W, Offringa M, van Kaam A. Late (≥ 7 days) inhalation corticosteroids to reduce bronchopulmonary dysplasia in preterm infants[J]. Cochrane Database Syst Rev, 2012, 4(4):CD002311.
[14]
Shah VS, Ohlsson A, Halliday HL, et al. Early administration of inhaled corticosteroids for preventing chronic lung disease in ventilatedvery low birth weight preterm neonates[J]. Cochrane Database Syst Rev, 2012, 16(5):CD001969.
[15]
Maas C, Poets CF, Bassler D. Survey of practices regarding utilization of inhaled steroids in 223 German neonatal units[J].Neonatology, 2010, 98(4):404-408.
[16]
Venkataraman R, Kamaluddeen M, Hasan SU, et al. Intratracheal administration of budesonide-surfactant in prevention of bronchopulmonary dysplasia in very low birth weight infants:A systematic review and Meta-analysis[J]. Pediatr Pulmonol, 2017, 52(7):968-975.
[17]
Yeh TF, Chen CM, Wu SY, et al. Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2016, 193(1):86-95.
[18]
Fehrholz M, Glaser K, Speer CP, et al. Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells andfibroblasts[J]. Respir Res, 2017, 18(1):51.
[19]
Lista G, Fabbri L, Polackova R, et al. The real-world routine use of caffeine citrate in preterm infants:A European postauthorization safety study[J]. Neonatology, 2016, 109(3):221-227.
[20]
Nagatomo T, Jiménez J, Richter J, et al. Caffeine prevents hyperoxia-induced functional and structural lung damage in preterm rabbits[J]. Neonatology, 2016, 109(4):274-281.
[21]
Davis JM, Bhutani VK, Stefano JL, et al. Changes in pulmonary mechanics following caffeine administration in infants with bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 1989, 6(1):49-52.
[22]
Taha D, Kirkby S, Nawab U, et al. Early caffeine therapy for prevention of broncho-pulmonary dysplasia in preterm infants[J]. J Matern Fetal Med, 2014, 27(16):1698-1702.
[23]
Finer NN, Merritt TA, Bernstein G, et al. An open label pilot study of Aero surf(R) combined with nCPAP to prevent RDS in preterm neonates[J]. J Aerosol Med Pulm Drug Deliv, 2010, 23:303-309.
[24]
Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome[J]. Cochrane Database Syst Rev, 2012, 11:CD001456.
Ballard HO, Shook LA, Bernard P, et al. Use of azithromycin for the prevention of bronchopulmonary dysplasiainpreterm infants:a randomized, double-blind, placebo controlled trial[J]. Pediatr Pulmonol, 2011, 46:111-118.
[27]
Ozdemir R, Erdeve O, Dizdard EA, et al. Clarithromycin in preventing bronchopulmonary dysplasiain ureaplasma urealyticum-positive preterm infants[J]. Pediatrics, 2011, 128(6):e1496-e1501.
[28]
Mabanta CG, Pryhuber GS,Weinberg GA, et al. Erythromycin for the prevention of chronic lung disease in intubated preterm infants at risk for, or colonized or infected with Ureaplasma urealyticum[J]. Cochrane Database Syst Rev, 2003, (4):CD003744.
[29]
Iyengar A, Davis JM. Drug therapy for the prevention and treatment of bronchopulmonary dysplasia[J]. Front Pharmacol, 2015, 6:12.
[30]
Mourani PM, Abman SH. Pulmonary hypertension and vascular abnormalities in bronchopulmonary dysplasia[J]. Clin Perinatol, 2015, 42(4):839-855.
[31]
Balasubramaniam V, Maxey AM, Morgan DB, et al. Inhaled NO restores lung structure in eNOS-deficient mice recovering fromneonatal hypoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2006, 291(1):L119-127.
[32]
Tang JR, Seedorf G, Balasubramaniam V, et al. Early inhaled nitric oxide treatment decreases apoptosis of endothelial cells in neonatal rat lungs after vascular endothelial growth factor inhibition[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(5):L1271-1280.
[33]
Van Meurs KP, Wright LL, Ehrenkranz RA, et al. Inhaled nitric oxide for premature infants with severe respiratory failure[J]. N Engl J Med, 2005, 353(1):13-22.
[34]
Kumar P, Committee on Fetus and Newborn, American Academy of Pediatrics. Use of inhaled nitric oxide in preterm infants[J]. Pediatrics, 2014, 133(1):164-170.
[35]
de Visser YP, Walther FJ, Laghmani el H, et al. Sildenafil attenuates pulmonary inflammation and fibrinde position, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury[J]. Respir Res, 2009, 10:30.
[36]
Wardle AJ, Tulloh RM. Paediatric pulmonary hypertension and sildenafil:current practice and controversies[J]. Arch Dis Child Educ Pract Ed, 2013, 98(4):141-147.
[37]
Pantalitschka T, Poets CF. Inhaled drugs for the prevention and treatment of bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2006, 41(8):703-708.
[38]
Slaughter JL, Stenger MR, Reagan PB, et al. Inhaled bronchodilator use for infants with bronchopulmonary dysplasia[J]. J Perinatol, 2015, 35(1):61-66.
[39]
Clouse BJ, Jadcherla SR, Slaughter JL. Systematic review of inhaled bronchodilator and corticosteroid therapies in infants with bronchopulmonary dysplasia:Implications and future directions[J]. PLoS One, 2016, 11(2):e0148188.
Darlow BA, Graham PJ, Rojas-Reyes MX. Vitamin A supplementation to prevent mortality and short-and long-term morbidity in very low birthweight infants[J]. Cochrane Database Syst Rev, 2016, (8):CD000501.
[42]
Laughon MM. Vitamin A shortage and risk of bronchopulmonary dysplasia[J]. JAMA Pediatr, 2014, 168(11):995-996.
[43]
Tyson JE, Wright LL, Oh W, et al. Vitamin A supplementation for extremely low birthweight infants[J]. N Engl J Med, 1999, 340(25):1962-1968.
[44]
Ambalavanan N, Tyson JE, Kennedy KA, et al. Vitamin A supplementation for extremely low birthweight infants:outcome at 18 to 22 months[J]. Pediatrics, 2005, 115(3):e249-e254.
[45]
Poggi C, Dani C. Antioxidant strategies and respiratory disease of the preterm newborn:an update[J]. Oxid Med Cell Longev, 2014, 2014:721043.
[46]
Davis JM, Parad RB, Michele T, et al. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn super oxide dismutase[J]. Pediatrics, 2003, 111(3):469-476.
[47]
Sandberg K, Fellman V, Stigson L, et al. N-acetylcysteine administration during the first week of life does not improve lung function in extremely lowbirth weight infants[J]. Biol Neonate, 2004, 86(4):275-279.
[48]
Abdel Ghany EA, Alsharany W, Ali AA, et al. Anti-oxidant profiles and markers of oxidative stress in preterm neonates[J]. Paediatr Int Child Health, 2016, 36(2):134-140.
Alphonse RS, Rajabali S, Thébaud B. Lung injury in preterm neonates, the role and therapeutic potential of stem cells[J]. Antioxid Redox Signal, 2012, 17(7):1013-1040.
[51]
Hansmann G, Fernandez-Gonzalez A, AslamM, et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and as sociated pulmonary hypertension[J]. Pulm Circ, 2012, 2(2):170-181.