
支气管肺发育不良早产儿血清YKL-40和HMGB1水平的变化
Changes in serum human cartilage glycoprotein-39 and high-mobility group box 1 in preterm infants with bronchopulmonary dysplasia
目的 探究早产儿生后外周血人软骨糖蛋白-39(YKL-40)、高迁移率族蛋白1(HMGB1)水平动态变化与支气管肺发育不良(BPD)的关系。方法 前瞻性选择2017年7月至2019年8月新生儿重症监护室收治的出生胎龄≥ 28周且<32周、出生体重<1 500 g的早产儿,根据诊断分为BPD组(n=35)和非BPD组(n=51)。通过酶联免疫吸附法检测早产儿生后第3、7、14天血清YKL-40和HMGB1浓度并进行比较。结果 BPD组第3、7、14天血清YKL-40浓度均低于非BPD组(P < 0.001),HMGB1浓度均高于非BPD组(P < 0.001)。两组第7、14天血清YKL-40及HMGB1浓度均高于第3天(P < 0.017)。BPD组第14天HMGB1浓度高于第7天(P < 0.017),第7、14天YKL-40浓度差异无统计学意义(P > 0.017)。非BPD组第14天YKL-40浓度高于第7天(P < 0.017),第7、14天HMGB1浓度差异无统计学意义(P > 0.017)。结论 BPD及非BPD早产儿生后第3、7、14天外周血中YKL-40及HMGB1水平存在差异,两者可能与BPD的形成相关。
Objective To study the association of the dynamic changes of peripheral blood human cartilage glycoprotein-39 (YKL-40) and high-mobility group box 1 (HMGB1) with bronchopulmonary dysplasia (BPD) in preterm infants. Methods Preterm infants, with a gestational age of 28-32 weeks and a birth weight of <1 500 g, who were admitted to the neonatal intensive care unit from July 2017 to August 2019 were prospectively selected and divided into a BPD group with 35 infants and a non-BPD group with 51 infants. ELISA was used to measure the serum concentrations of YKL-40 and HMGB1 in preterm infants on days 3, 7, and 14 after birth. Results The BPD group had a significantly lower serum YKL-40 concentration and a significantly higher serum HMGB1 concentration than the nonBPD group on days 3, 7, and 14 (P < 0.001). The serum concentrations of YKL-40 and HMGB1 on days 7 and 14 were significantly higher than those on day 3 in both groups (P < 0.017). In the BPD group, HMGB1 concentration on day 14 was significantly higher than that on day 7 (P < 0.017), while there was no significant change in YKL-40 concentration from day 7 to day 14 (P > 0.017). In the non-BPD group, YKL-40 concentration on day 14 was significantly higher than that on day 7 (P < 0.017), while there was no significant change in HMGB1 concentration from day 7 to day 14 (P > 0.017). Conclusions There are significant differences in the levels of YKL-40 and HMGB1 in peripheral blood between the preterm infants with BPD and those without BPD on days 3, 7, and 14 after birth, suggesting that YKL-40 and HMGB1 might be associated with the development of BPD.
支气管肺发育不良 / 人软骨糖蛋白-39 / 高迁移率族蛋白1 / 早产儿
Bronchopulmonary dysplasia / Human cartilage glycoprotein-39 / High-mobility group box 1 / Preterm infant
[1] Strueby L, Thébaud B. Advances in bronchopulmonary dysplasia[J]. Expert Rev Respir Med, 2014, 8(3):327-338.
[2] Brener Dik PH, Niño Gualdron YM, Galletti MF, et al. Bronchopulmonary dysplasia:incidence and risk factors[J]. Arch Argent Pediatr, 2017, 115(5):476-482.
[3] Rehli M, Niller HH, Ammon C, et al. Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation[J]. J Biol Chem, 2003, 278(45):44058-44067.
[4] Francescone RA, Scully S, Faibish M, et al. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma[J]. J Biol Chem, 2011, 286(17):15332-15343.
[5] Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome:advances in diagnosis and treatment[J]. JAMA, 2018, 319(7):698-710.
[6] Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1):nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5(4):331-342.
[7] Chupp GL, Lee CG, Jarjour N, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma[J]. N Engl J Med, 2007, 357(20):2016-2027.
[8] Sakazaki Y, Hoshino T, Takei S, et al. Overexpression of chitinase 3-like 1/YKL-40 in lung-specific IL-18-transgenic mice, smokers and COPD[J]. PLoS One, 2011, 6(9):e24177.
[9] Hou C, Zhao H, Liu L, et al. High mobility group protein Bl (HMGB1) in asthma:comparison of patients with chronic obstructive pulmonary disease and healthy controls[J]. Mol Med, 2011, 17(7-8):807-815.
[10] Zhou Y, Jiang YQ, Wang WX, et al. HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage[J]. Hum Immunol, 2012, 73(11):1171-1174.
[11] 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 第4版. 北京:人民卫生出版社, 2011:340-347.
[12] Jiménez J, Richter J, Nagatomo T, et al. Progressive vascular functional and structural damage in a bronchopulmonary dysplasia model in preterm rabbits exposed to hyperoxia[J]. Int J Mol Sci, 2016, 17(10). pii:E1776.
[13] 陈超, 袁琳. 早产儿支气管肺发育不良的病因及危险因素[J]. 中国实用儿科杂志, 2014, 29(1):5-7.
[14] Shao R, Taylor SL, Oh DS, et al. Vascular heterogeneity and targeting:the role of YKL-40 in glioblastoma vascularization[J]. Oncotarget, 2015, 6(38):40507-40518.
[15] Park JA, Drazen JM, Tschumperlin DJ. The chitinase-like protein YKL-40 is secreted by airway epithelial cells at base line and in response to compressive mechanical stress[J]. J Biol Chem, 2010, 285(39):29817-29825.
[16] Rathcke CN, Johansen JS, Vestergaard H. YKL-40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance[J]. Inflamm Res, 2006, 55(2):53-59.
[17] Bara I, Ozier A, Girodet PO, et al. Role of YKL-40 in bronchial smooth muscle remodeling in asthma[J]. Am J Respir Crit Care Med, 2012, 185(7):715-722.
[18] Zhu Z, Zheng T, Homer RJ, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation[J]. Science, 2004, 304(5677):1678-1682.
[19] Miura T. Models of lung branching morphogenesis[J]. J Biochem, 2015, 157(3):121-127.
[20] Been JV, Debeer A, van Iwaarden JF, et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia[J]. Pediatr Res, 2010, 67(1):83-89.
[21] Matsuura H, Hartl D, Kang MJ, et al. Role of breast regression protein-39 in the pathogenesis of cigarette smoke-induced inflammation and emphysema[J]. Am J Respir Cell Mol Biol, 2011, 44(6):777-786.
[22] Francescone RA, Scully S, Faibish M, et al. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma[J]. J Biol Chem, 2011, 286(17):15332-15343.
[23] 祁媛媛, 姜茜, 陈超, 等. 外周血内皮祖细胞与极低出生体重早产儿并发症发生相关性[J]. 中国循证儿科杂志, 2013, 8(5):369-373.
[24] Sohn MH, Kang MJ, Matsuura H, et al. The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury[J]. Am J Respir Crit Care Med, 2010, 182(7):918-928.
[25] 唐春林, 丁宁, 程傲冰. EGFR-p38 MAPK信号通路参与机械通气肺损伤大鼠肺组织HMGB1的表达[J]. 中国病理生理杂志, 2013, 29(6):1029-1033.
[26] Gong Q, Xu JF, Yin H, et al. Protective effect of antagonist of high-mobility group box 1 on lipopolysaccharide-induced acute lung injury in mice[J]. Scand J Immunol, 2009, 69(1):29-35.
[27] Yu B, Li X, Wan Q, et al. High-mobility group box-1 protein disrupts alveolar elastogenesis of hyperoxia-injured newborn lungs[J]. J Interferon Cytokine Res, 2016, 36(3):159-168.
[28] 马杰飞, 何义舟, 罗哲, 等. 高迁移率族蛋白1在呼吸机相关性肺损伤大鼠中的表达变化[J]. 中国临床医学, 2015, 22(1):29-32.