细胞焦亡在胆红素诱导小胶质细胞损伤中的作用研究

黄洪梅, 何春梅, 李思宇, 张燕, 华子瑜

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (9) : 1027-1033.

PDF(2146 KB)
PDF(2146 KB)
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (9) : 1027-1033. DOI: 10.7499/j.issn.1008-8830.2003175
论著·实验研究

细胞焦亡在胆红素诱导小胶质细胞损伤中的作用研究

  • 黄洪梅, 何春梅, 李思宇, 张燕, 华子瑜
作者信息 +

Role of pyroptosis in bilirubin-induced microglial injury

  • HUANG Hong-Mei, HE Chun-Mei, LI Si-Yu, ZHANG Yan, HUA Zi-Yu
Author information +
文章历史 +

摘要

目的 探讨细胞焦亡是否参与胆红素诱导原代培养大鼠大脑皮质小胶质细胞的损伤。方法 原代培养大鼠大脑皮质小胶质细胞,随机分为胆红素组(30 μmol/L胆红素刺激)、VX-765+胆红素组(30 μmol/L VX-765预处理1 h,再用30 μmol/L胆红素刺激)、对照组(等体积二甲基亚砜处理)。改良MTT法检测小胶质细胞存活率;Western blot法检测焦亡相关蛋白半胱氨酸天冬氨酸蛋白酶-1(Caspase-1)、gasdermin D(GSDMD)表达;乳酸脱氢酶(LDH)释放实验检测细胞毒性作用;不同分子量染料EtBr/EthD2(分子量394 Da/1 293 Da)染色检测细胞膜孔大小;ELISA法检测细胞培养上清液中炎症因子IL-1β水平。结果 胆红素刺激后,小胶质细胞存活率随时间依赖性下降;LDH释放呈时间依赖性增加;胆红素组小分子染料EtBr通过细胞膜阳性率明显高于对照组(P < 0.001),但各组大分子染料EthD2通过率比较差异无统计学意义(P > 0.05);胆红素刺激后0.5 h活化型Caspase-1、6 h活化型GSDMD表达增加(P < 0.05);IL-1β水平在胆红素刺激后6 h明显增加,24 h达高峰(P < 0.001)。与胆红素组相比,VX-765+胆红素组细胞存活率升高(P < 0.05),活化型GSDMD表达、EtBr通过率、LDH及IL-1β释放均减少(P < 0.05)。结论 细胞焦亡参与胆红素诱导的原代培养小胶质细胞损伤。

Abstract

Objective To study whether pyroptosis is involved in the bilirubin-induced injury of primary cultured rat cortical microglial cells. Methods Primary cultured rat cortical microglial cells were randomly administered with 30 μmol/L bilirubin (bilirubin group), 30 μmol/L bilirubin following 30 μmol/L VX-765 pretreatment (VX-765+bilirubin group), or an equal volume of dimethyl sulfoxide (control group). Modified MTT assay was used to measure the viability of microglial cells. Western blot was used to measure the expression of the pyroptosis-related proteins Caspase-1 and gasdermin D (GSDMD). Lactate dehydrogenase (LDH)-release assay was used to evaluate the cytotoxicity of microglial cells. EtBr/EthD2 with different molecular weights (394 Da/1 293 Da) was used to measure the size of plasma membrane pores. ELISA was used to measure the level of the inflammatory factor interleukin-1β (IL-1β) in culture supernatant. Results After bilirubin stimulation, the viability of microglial cells decreased and LDH release increased, both in a time-dependent manner. Compared with the control group, the bilirubin group had a significantly higher positive rate of small-molecule EtBr passing through the cell membrane (P < 0.001), while there was no significant difference in the pass rate of large-molecule EthD2 between groups (P > 0.05). The expression of activated Caspase-1 significantly increased at 0.5 hour after bilirubin stimulation (P < 0.05), and that of activated GSDMD significantly increased at 6 hours after bilirubin stimulation (P < 0.05). The release of IL-1β significantly increased at 6 hours after bilirubin stimulation and reached the peak at 24 hours (P < 0.001). Compared with the bilirubin group, the VX-765+bilirubin group had a significant increase in cell viability (P < 0.05) and significant reductions in the expression of activated GSDMD, the pass rate of EtBr, and the release of LDH and IL-1β (P < 0.05). Conclusions Pyroptosis is involved in bilirubin-induced injury of primary cultured microglial cells.

关键词

胆红素 / 细胞焦亡 / 神经毒性 / 大鼠 / 小胶质细胞

Key words

Bilirubin / Pyroptosis / Neurotoxicity / Rats / Microglial cell

引用本文

导出引用
黄洪梅, 何春梅, 李思宇, 张燕, 华子瑜. 细胞焦亡在胆红素诱导小胶质细胞损伤中的作用研究[J]. 中国当代儿科杂志. 2020, 22(9): 1027-1033 https://doi.org/10.7499/j.issn.1008-8830.2003175
HUANG Hong-Mei, HE Chun-Mei, LI Si-Yu, ZHANG Yan, HUA Zi-Yu. Role of pyroptosis in bilirubin-induced microglial injury[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(9): 1027-1033 https://doi.org/10.7499/j.issn.1008-8830.2003175

参考文献

[1] Schiavon E, Smalley JL, Newton S, et al. Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model[J]. PLoS One, 2018, 13(8):e0201022.
[2] Memon N, Weinberger BI, Hegyi T, et al. Inherited disorders of bilirubin clearance[J]. Pediatr Res, 2016, 79(3):378-386.
[3] Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin:role of glial cells and inflammation[J]. Front Pharmacol, 2012, 3:88.
[4] Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage-mechanisms and management approaches[J]. N Engl J Med, 2013, 369(21):2021-2030.
[5] Vodret S, Bortolussi G, Iaconcig A, et al. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia[J]. Brain Behav Immun, 2018, 70:166-178.
[6] Olds C, Oghalai JS. Audiologic impairment associated with bilirubin-induced neurologic damage[J]. Semin Fetal Neonatal Med, 2015, 20(1):42-46.
[7] Rose J, Vassar R. Movement disorders due to bilirubin toxicity[J]. Semin Fetal Neonatal Med, 2015, 20(1):20-25.
[8] Barateiro A, Chen S, Yueh MF, et al. Reduced myelination and increased glia reactivity resulting from severe neonatal hyperbilirubinemia[J]. Mol Pharmacol, 2016, 89(1):84-93.
[9] Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665.
[10] Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages[J]. Cell Microbiol, 2006, 8(11):1812-1825.
[11] McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis[J]. Proc Natl Acad Sci U S A, 2018, 115(26):E6065-E6074.
[12] Flores J, Noël A, Foveau B, et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer's disease mouse model[J]. Nat Commun, 2018, 9(1):3916.
[13] Feng J, Li M, Wei Q, et al. Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes[J]. J Neuroin-flammation, 2018, 15(1):23.
[14] Perry VH, Holmes C. Microglial priming in neurodegenerative disease[J]. Nat Rev Neurol, 2014, 10(4):217-224.
[15] Brites D, Fernandes A, Falcão AS, et al. Biological risks for neurological abnormalities associated with hyperbiliru-binemia[J]. J Perinatol, 2009, 29 Suppl 1:S8-S13.
[16] Jacque CM, Vinner C, Kujas M, et al. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors[J]. J Neurol Sci, 1978, 35(1):147-155.
[17] Tamashiro TT, Dalgard CL, Byrnes KR. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue[J]. J Vis Exp, 2012, (66):e3814.
[18] Watchko JF. Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns[J]. Neuromolecular Med, 2006, 8(4):513-529.
[19] He C, Feng J, Huang H, et al. Caspase-1 involves in bilirubin-induced injury of cultured rat cortical neurons[J]. Pediatr Res, 2019, 86(4):492-499.
[20] Hanisch UK. Microglia as a source and target of cytokines[J]. Glia, 2002, 40(2):140-155.
[21] Conde JR, Streit WJ. Microglia in the aging brain[J]. J Neuropathol Exp Neurol, 2006, 65(3):199-203.
[22] Man SM, Kanneganti TD. Converging roles of caspases in inflammasome activation, cell death and innate immunity[J]. Nat Rev Immunol, 2016, 16(1):7-21.
[23] 李胜君, 李梦文, 张燕, 等. 反式激活蛋白-NEMO结合域抑制胆红素诱导的大鼠皮层星形胶质细胞NF-κB活化[J]. 第三军医大学学报, 2015, 37(21):2131-2136.
[24] Lv Y, Sun B, Lu XX, et al. The role of microglia mediated pyroptosis in neonatal hypoxic-ischemic brain damage[J]. Biochem Biophys Res Commun, 2020, 521(4):933-938.
[25] He X, Yang W, Zeng Z, et al. NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology[J]. Cell Mol Immunol, 2020, 17(3):283-299.
[26] Paré A, Mailhot B, Lévesque SA, et al. IL-1β enables CNS access to CCR2hi monocytes and the generation of pathogenic cells through GM-CSF released by CNS endothelial cells[J]. Proc Natl Acad Sci U S A, 2018, 115(6):E1194-E1203.
[27] Meissner F, Molawi K, Zychlinsky A. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis[J]. Proc Natl Acad Sci U S A, 2010, 107(29):13046-13050.
[28] Evavold CL, Ruan J, Tan Y, et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages[J]. Immunity, 2018, 48(1):35-44.e6.
[29] Maroso M, Balosso S, Ravizza T, et al. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice[J]. Neurotherapeutics, 2011, 8(2):304-315.
[30] Li Q, Dai Z, Cao Y, et al. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation[J]. Biochem Biophys Res Commun, 2019, 513(2):479-485.
[31] Xu XE, Liu L, Wang YC, et al. Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis[J]. Brain Behav Immun, 2019, 80:859-870.

基金

国家自然科学基金(81971426);重庆市科学技术委员会(cstc2018jcyjAX0284)。


PDF(2146 KB)

Accesses

Citation

Detail

段落导航
相关文章

/