高龄妊娠对子鼠海马神经干细胞发育的影响

杨静, 韩慰, 刘洁, 杨晨, 赵文婕, 孙红, 潘亚男, 陈恒胜, 程莉, 蒋莉

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (9) : 1017-1026.

PDF(6419 KB)
HTML
PDF(6419 KB)
HTML
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (9) : 1017-1026. DOI: 10.7499/j.issn.1008-8830.2003213
论著·实验研究

高龄妊娠对子鼠海马神经干细胞发育的影响

  • 杨静, 韩慰, 刘洁, 杨晨, 赵文婕, 孙红, 潘亚男, 陈恒胜, 程莉, 蒋莉
作者信息 +

Effect of advanced maternal age on development of hippocampal neural stem cells in offspring rats

  • YANG Jing, HAN Wei, LIU Jie, YANG Chen, ZHAO Wen-Jie, SUN Hong, PAN Ya-Nan, CHEN Heng-Sheng, CHENG Li, JIANG Li
Author information +
文章历史 +

摘要

目的 探讨高龄妊娠对子鼠海马神经干细胞发育的影响。方法 将3月龄(n=10)与12月龄(n=10)的雌性大鼠分别与3月龄雄性大鼠(n=20)合笼,以其子鼠为研究对象,分为适龄子代组和高龄子代组,每组40只。分别采用免疫荧光及Western blot法定位及定量检测生后第7天两组海马组织巢蛋白(Nestin)、双皮质素(DCX)及生后第28天成熟神经元标志物NeuN、胶质纤维酸性蛋白(GFAP)表达水平;采用免疫荧光法定位检测生后第14天两组海马组织多聚唾液酸神经细胞黏附分子(PSA-NCAM)表达情况;每组各检测指标随机取8只大鼠。结果 Western blot检测结果发现高龄子代组海马DCX蛋白的表达明显低于适龄子代组(P < 0.05),Nestin、NeuN及GFAP蛋白表达在两组间比较差异均无统计学意义(P > 0.05)。免疫荧光检测结果显示,高龄子代组海马齿状回(DG)区Nestin、DCX及PSA-NCAM的表达均明显低于适龄子代组(P < 0.05),而上述指标分别在两组海马CA1区、CA3区的表达比较差异均无统计学意义(P > 0.05)。高龄子代组海马CA1区NeuN的表达高于适龄子代组(P < 0.01),两组CA3区和DG区NeuN的表达比较差异无统计学意义(P > 0.05)。高龄子代组海马CA1区、CA3区、DG区GFAP的表达均低于适龄子代组(P < 0.05)。结论 高龄妊娠可能引起子鼠海马神经干细胞的增殖、存活及迁移受到抑制,并影响其向神经元和星形胶质细胞的分化,最终导致子鼠海马神经干细胞发育障碍。

Abstract

Objective To study the effect of advanced maternal age (AMA) on the development of hippocampal neural stem cells in offspring rats. Methods Ten 3-month-old and ten 12-month-old female Sprague-Dawley rats were housed individually with 3-month-old male rats (1:1, n=20), whose offspring rats were assigned to a control group and an AMA group. A total of 40 rats were randomly selected from each group. Immunofluorescence assay and Western blot were used to localize and determine the levels of protein expression of Nestin and doublecortin (DCX) on day 7 as well as neuronal nuclear antigen (NeuN) and glial fibrillary acidic protein (GFAP) on day 28 (n=8 for each marker). Immunofluorescence assay was also used to localize the hippocampal expression of polysialylated isoforms of neural cell adhesion molecule (PSA-NCAM) on day 14 (n=8 for each marker). Results According to the Western blot results, the AMA group had significantly lower protein expression of DCX than the control group (P < 0.05), while there were no significant differences in the protein expression of Nestin, NeuN, and GFAP between the two groups (P > 0.05). According to the results of immunofluorescence assay, the AMA group had significantly lower protein expression of Nestin, DCX, and PSA-NCAM in the hippocampal dentate gyrus (DG) region than the control group (P < 0.05), while there were no significant differences in the above indices in the hippocampal CA1 and CA3 regions between the two groups (P > 0.05). The AMA group had significantly higher expression of NeuN in the hippocampal CA1 region than the control group (P < 0.01), while there were no significant differences in the expression of NeuN in the hippocampal DG and CA3 regions between the two groups (P > 0.05). The AMA group had significantly lower expression of GFAP in the hippocampal CA1, CA3, and DG regions than the control group (P < 0.05). Conclusions AMA may cause inhibition of proliferation, survival, and migration of hippocampal neural stem cells. AMA may also affect their differentiation into neurons and astrocytes, which will eventually lead to developmental disorders of hippocampal neural stem cells in offspring rats.

关键词

高龄妊娠 / 海马神经干细胞 / 发育 / 大鼠

Key words

Advanced maternal age / Hippocampal neural stem cell / Development / Rats

引用本文

导出引用
杨静, 韩慰, 刘洁, 杨晨, 赵文婕, 孙红, 潘亚男, 陈恒胜, 程莉, 蒋莉. 高龄妊娠对子鼠海马神经干细胞发育的影响[J]. 中国当代儿科杂志. 2020, 22(9): 1017-1026 https://doi.org/10.7499/j.issn.1008-8830.2003213
YANG Jing, HAN Wei, LIU Jie, YANG Chen, ZHAO Wen-Jie, SUN Hong, PAN Ya-Nan, CHEN Heng-Sheng, CHENG Li, JIANG Li. Effect of advanced maternal age on development of hippocampal neural stem cells in offspring rats[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(9): 1017-1026 https://doi.org/10.7499/j.issn.1008-8830.2003213

参考文献

[1] Dietl A, Farthmann J. Gestational hypertension and advanced maternal age[J]. Lancet, 2015, 386(10004):1627-1628.
[2] Han W, Dong X, Song X, et al. Effects of advanced maternal age on cognitive and emotional development in offspring rats[J]. Behav Brain Res, 2018, 353:218-226.
[3] Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus:from stem cells to behavior[J]. Cell, 2016, 167(4):897-914.
[4] Huang H, Liu CM, Sun J, et al. Ketamine affects the neurogenesis of the hippocampal dentate gyrus in 7-Day-Old rats[J]. Neurotox Res, 2016, 30(2):185-198.
[5] Kempermann G, Jessberger S, Steiner B, et al. Milestones of neuronal development in the adult hippocampus[J]. Trends Neurosci, 2004, 27(8):447-452.
[6] Paredes MF, James D, Gil-Perotin S, et al. Extensive migration of young neurons into the infant human frontal lobe[J]. Science, 2016, 354(6308):aaf7073.
[7] Martin JA, Hamilton BE, Sutton PD, et al. Births:final data for 2004[J]. Natl Vital Stat Rep, 2006, 55(1):1-101.
[8] Wu S, Wu F, Ding Y, et al. Advanced parental age and autism risk in children:a systematic review and meta-analysis[J]. Acta Psychiatr Scand, 2017, 135(1):29-41.
[9] Menezes PR, Lewis G, Rasmussen F, et al. Paternal and maternal ages at conception and risk of bipolar affective disorder in their offspring[J]. Psychol Med, 2010, 40(3):477-485.
[10] Luna VM, Anacker C, Burghardt NS, et al. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus[J]. Science, 2019, 364(6440):578-583.
[11] Xue XJ, Yuan XB. Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells[J]. Mol Cell Neurosci, 2010, 45(1):26-36.
[12] Hill JD, Zuluaga-Ramirez V, Gajghate S, et al. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation[J]. Brain Behav Immun, 2019, 76:165-181.
[13] Tchieu J, Calder EL, Guttikonda SR, et al. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells[J]. Nat Biotechnol, 2019, 37(3):267-275.
[14] Sofroniew MV. Stem-cell-derived astrocytes divulge secrets of mutant GFAP[J]. Cell Stem Cell, 2018, 23(5):630-631.
[15] Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation[J]. Nat Rev Neurosci, 2017, 18(1):31-41.
[16] Zott B, Busche MA, Sperling RA, et al. What happens with the circuit in Alzheimer's disease in mice and humans?[J]. Annu Rev Neurosci, 2018, 41:277-297.
[17] Talbot ZN, Sparks FT, Dvorak D, et al. Normal CA1 place fields but discoordinated network discharge in a fmr1-null mouse model of fragile X syndrome[J]. Neuron, 2018, 97(3):684-697.e4.
[18] Neniskyte U, Gross CT. Errant gardeners:glial-cell-dependent synaptic pruning and neurodevelopmental disorders[J]. Nat Rev Neurosci, 2017, 18(11):658-670.
[19] Cardozo PL, de Lima IBQ, Maciel EMA, et al. Synaptic elimination in neurological disorders[J]. Curr Neuropharmacol, 2019, 17(11):1071-1095.
[20] Chung WS, Clarke LE, Wang GX, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways[J]. Nature, 2013, 504(7480):394-400.

基金

国家自然科学基金(81873792)。


PDF(6419 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/