泛素-特异性蛋白酶7在高氧暴露早产鼠肺组织中的表达及意义

黄晓悦, 全裕凤, 严隆丽, 赵琳

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (12) : 1331-1337.

PDF(3381 KB)
HTML
PDF(3381 KB)
HTML
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (12) : 1331-1337. DOI: 10.7499/j.issn.1008-8830.2007147
论著·实验研究

泛素-特异性蛋白酶7在高氧暴露早产鼠肺组织中的表达及意义

  • 黄晓悦1, 全裕凤1, 严隆丽2, 赵琳3
作者信息 +

Expression of ubiquitin-specific protease 7 in lung tissue of preterm rats after hyperoxia exposure

  • HUANG Xiao-Yue1, QUAN Yu-Feng1, YAN Long-Li2, ZHAO Lin3
Author information +
文章历史 +

摘要

目的 探讨泛素-特异性蛋白酶7(USP7)及Wnt信号通路中关键因子在高氧暴露早产大鼠肺组织中的表达及意义。方法 将180只新生早产Wistar大鼠随机均分成空气对照组、空气干预组、高氧对照组及高氧干预组,每组45只。干预组早产鼠每天腹腔注射USP7特异性抑制剂P5091(5 mg/kg),高氧组建立早产大鼠高氧暴露肺损伤动物模型。分别于实验过程第3、5、9天时处死动物收集早产鼠肺组织标本,通过苏木精-伊红染色病理切片观察肺组织病理变化;采用RT-PCR及Western blot技术检测肺组织中USP7及Wnt信号通路关键因子β-catenin、α-平滑肌肌动蛋白(α-SMA)的mRNA及其蛋白表达水平。结果 空气各组肺组织形态结构基本正常;高氧对照组3 d、5 d时可见肺泡明显压缩、结构紊乱,有明显炎症细胞、红细胞渗出及间质水肿改变;高氧对照组9 d时可见肺泡结构紊乱、肺泡间隔明显增厚;高氧干预组肺组织结构紊乱、炎症细胞浸润、红细胞渗出情况均较相应时间点的高氧对照组有所减轻;各时间点高氧各组放射状肺泡计数(RAC)均明显低于相应空气各组(P < 0.05),且高氧干预组RAC较高氧对照组明显升高(P < 0.05)。实验第3、5、9天时,高氧各组USP7、β-catenin mRNA及USP7、β-catenin、α-SMA蛋白表达均较相应空气各组增加(P < 0.05);高氧干预组β-catenin mRNA及β-catenin、α-SMA蛋白表达较高氧对照组减少(P < 0.05);高氧干预组USP7 mRNA及蛋白表达与高氧对照组相比差异无统计学意义(P > 0.05),空气干预组USP7、β-catenin mRNA及USP7、β-catenin、α-SMA蛋白表达与空气对照组相比差异无统计学意义(P > 0.05)。结论 高氧暴露可激活Wnt/β-catenin信号通路;USP7可能通过Wnt/β-catenin信号通路参与高氧肺损伤;USP7特异性抑制剂P5091可能通过加强β-catenin的泛素化来加速其降解,减少肺上皮-间质转化,从而对高氧肺损伤具有一定的保护作用。

Abstract

Objective To study the expression and significance of ubiquitin-specific protease 7 (USP7) and the key factors of the Wnt signaling pathway in the lung tissue of preterm rats after hyperoxia exposure. Methods A total of 180 preterm neonatal Wistar rats were randomly divided into an air control group, an air intervention group, a hyperoxia control group, and a hyperoxia intervention group, with 45 rats in each group. Lung injury was induced by hyperoxia exposure in the hyperoxia groups. The preterm rats in the intervention groups were given intraperitoneal injection of the USP7 specific inhibitor P5091 (5 mg/kg) every day. The animals were sacrificed on days 3, 5, and 9 of the experiment to collect lung tissue specimens. Hematoxylin-eosin staining was used to observe the pathological changes of lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression levels of USP7 and the key factors of the Wnt signaling pathway β-catenin and α-smooth muscle actin (α-SMA) in lung tissue. Results The air groups had normal morphology and structure of lung tissue; on days 3 and 5, the hyperoxia control group showed obvious alveolar compression and disordered structure, with obvious inflammatory cells, erythrocyte diapedesis, and interstitial edema. On day 9, the hyperoxia control group showed alveolar structural disorder and obvious thickening of the alveolar septa. Compared with the hyperoxia control group at the corresponding time points, the hyperoxia intervention group had significantly alleviated disordered structure, inflammatory cell infiltration, and bleeding in lung tissue. At each time point, the hyperoxia groups had a significantly lower radial alveolar count (RAC) than the corresponding air groups (P < 0.05), and the hyperoxia intervention group had a significantly higher RAC than the hyperoxia control group (P < 0.05). On days 3, 5, and 9 of the experiment, the hyperoxia groups had significantly higher mRNA expression of USP7 and β-catenin and protein expression of USP7, β-catenin, and α-SMA than the corresponding air groups (P < 0.05). Compared with the hyperoxia control group, the hyperoxia intervention group had significant reductions in the mRNA expression of β-catenin and the protein expression of β-catenin and α-SMA (P < 0.05), while there were no significant differences in the mRNA and protein expression of USP7 between the hyperoxia intervention and hyperoxia control groups (P > 0.05). There were no significant differences in the mRNA expression of USP7 and β-catenin and the protein expression of USP7, β-catenin, and α-SMA between the air intervention and air control groups (P > 0.05). Conclusions Hyperoxia exposure can activate the Wnt/β-catenin signaling pathway, and USP7 may participate in hyperoxic lung injury through the Wnt/β-catenin signaling pathway. The USP7 specific inhibitor P5091 may accelerate the degradation of β-catenin by enhancing its ubiquitination, reduce lung epithelial-mesenchymal transition, and thus exert a certain protective effect against hyperoxic lung injury.

关键词

高氧肺损伤 / 泛素-特异性蛋白酶7 / Wnt/β-catenin信号通路 / 早产 / 大鼠

Key words

Hyperoxic lung injury / Ubiquitin-specific protease 7 / Wnt/β-catenin signaling pathway / Preterm birth / Rats

引用本文

导出引用
黄晓悦, 全裕凤, 严隆丽, 赵琳. 泛素-特异性蛋白酶7在高氧暴露早产鼠肺组织中的表达及意义[J]. 中国当代儿科杂志. 2020, 22(12): 1331-1337 https://doi.org/10.7499/j.issn.1008-8830.2007147
HUANG Xiao-Yue, QUAN Yu-Feng, YAN Long-Li, ZHAO Lin. Expression of ubiquitin-specific protease 7 in lung tissue of preterm rats after hyperoxia exposure[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(12): 1331-1337 https://doi.org/10.7499/j.issn.1008-8830.2007147

参考文献

[1] Kim JH. Di(2-ethylhexyl) phthalate promotes lung cancer cell line A549 progression via Wnt/β-catenin signaling[J]. J Toxicol Sci, 2019, 44(4):237-244.
[2] 严隆丽, 全裕凤, 张华, 等. SOX9及WNT信号通路分子在高氧暴露致早产大鼠肺损伤中的表达及意义[J]. 安徽医科大学学报, 2018, 53(4):552-557.
[3] Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, et al. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin[J]. Life Sci, 2018, 201:17-29.
[4] 黄宇戈, 封志纯, 余彦亮, 等. 泛素-蛋白酶体途径在高体积分数氧肺损伤大鼠早期的激活[J]. 实用儿科临床杂志, 2009, 24(6):422-424.
[5] Novellasdemunt L, Foglizzo V, Cuadrado L, et al. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination[J]. Cell Rep, 2017, 21(3):612-627.
[6] 彭清, 高习文. 泛素特异性蛋白酶7在博莱霉素诱导的小鼠炎症及肺纤维化过程中的表达及作用[J]. 蚌埠医学院学报, 2018, 43(7):845-849.
[7] 王少华, 党红星, 范倩倩, 等. 早产新生大鼠高氧肺损伤Shh信号转导途径Smo和Gli1蛋白表达和意义[J]. 中国新生儿科杂志, 2014, 29(1):49-53.
[8] 严隆丽, 全裕凤, 张华, 等. 早产大鼠在高氧暴露下肺组织高迁移率族盒蛋白4和β-连环素的表达及意义[J]. 中华新生儿科杂志, 2018, 33(2):136-141.
[9] 陈超, 袁琳. 早产儿支气管肺发育不良的病因及危险因素[J]. 中国实用儿科杂志, 2014, 29(1):5-7.
[10] 李燕, 韦秋芬, 潘新年, 等. 早产儿支气管肺发育不良严重程度的影响因素[J]. 中国当代儿科杂志, 2014, 16(10):1014-1018.
[11] Mucenski ML, Nation JM, Thitoff AR, et al. Beta-catenin regulates differentiation of respiratory epithelial cells in vivo[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(6):L971-L979.
[12] 梁超超, 程梦华, 刘石娟. 去泛素化酶活性的调控[J]. 中国生物化学与分子生物学报, 2018, 34(1):38-44.
[13] Geurink PP, van der Heden van Noort GJ, Mulder MPC, et al. Profiling DUBs and Ubl-specific proteases with activity-based probes[J]. Methods Enzymol, 2019, 618:357-387.
[14] Xu J, Taya S, Kaibuchi K, et al. Spatially and temporally specific expression in mouse hippocampus of Usp9x, a ubiquitin-specific protease involved in synaptic development[J]. J Neurosci Res, 2005, 80(1):47-55.
[15] Yun SI, Kim HH, Yoon JH, et al. Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer[J]. Mol Oncol, 2015, 9(9):1834-1851.
[16] An T, Gong Y, Li X, et al. USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth[J]. Biochem Pharmacol, 2017, 131:29-39.
[17] Li J, Han Y, Zhang H, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA[J]. Biochem Biophys Res Commun, 2019, 512(3):479-485.
[18] Wang J, Li HY, Su ZB. Stabilization of the histone acetyltransferase Tip60 by deubiquitinating enzyme USP7 stimulates the release of pro-inflammatory mediators in acute lung injury[J]. J Mol Med (Berl), 2020, 98(6):907-921.
[19] Carrà G, Panuzzo C, Torti D, et al. Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia:a strategy to overcome TP53 mutated/deleted clones[J]. Oncotarget, 2017, 8(22):35508-35522.
[20] Li X, Kong L, Yang Q, et al. Parthenolide inhibits ubiquitin-specific peptidase 7(USP7), Wnt signaling, and colorectal cancer cell growth[J]. J Biol Chem, 2020, 295(11):3576-3589.
[21] Mitxitorena I, Somma D, Mitchell JP, et al. The deubiquitinase USP7 uses a distinct ubiquitin-like domain to deubiquitinate NF-κB subunits[J]. J Biol Chem, 2020, 295(33):11754-11763.
[22] 朱晓丹. 锌指蛋白A20对急性肺损伤炎症反应的调控及机制研究[D]. 上海:复旦大学, 2012.
[23] Tan ZX, Chen YH, Xu S, et al. Calcitriol inhibits bleomycin-induced early pulmonary inflammatory response and epithelial-mesenchymal transition in mice[J]. Toxicol Lett, 2016, 240(1):161-171.
[24] Darby IA, Zakuan N, Billet F, et al. The myofibroblast, a key cell in normal and pathological tissue repair[J]. Cell Mol Life Sci, 2016, 73(6):1145-1157.

基金

国家自然科学基金(81360105)。


PDF(3381 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/