
新生儿血钙水平与围生期因素的关系及与智能尿检系统检测的尿钙水平的关系
张洁, 肖谧, 王芳会, 刘俐
中国当代儿科杂志 ›› 2021, Vol. 23 ›› Issue (6) : 563-568.
新生儿血钙水平与围生期因素的关系及与智能尿检系统检测的尿钙水平的关系
Association of neonatal blood calcium levels with perinatal factors and neonatal urinary calcium levels measured by an intelligent urine test system
目的 研究新生儿血钙水平与围生期因素的关系,以及与智能尿检系统所检测尿钙水平的关系。方法 采用横断面调查法收集2018年6~8月于西安交通大学第一附属医院新生儿科住院的96例轻症足月单胎新生儿的临床资料,记录智能尿检系统检测的新生儿尿钙含量和同期血总钙、离子钙水平,以及母亲孕期钙剂及维生素D的补充情况。结果 母亲孕期补充维生素D组(n=79)新生儿血总钙及离子钙水平均高于未补充维生素D组(n=17)(P < 0.05)。母亲孕期同时补钙及维生素D组(n=68)新生儿离子钙水平高于非同时补充组(n=28)(P=0.05)。母亲孕期补钙组(n=74)与未补钙组(n=22)比较,新生儿血总钙及离子钙水平差异均无统计学意义(P > 0.05)。低体温组新生儿(n=5)血总钙水平低于正常体温新生儿(n=91)(P < 0.05)。母亲血总钙水平与新生儿血总钙和离子钙水平均呈显著正相关(分别r=0.881、0.703,P < 0.05)。智能尿检系统检测的新生儿尿钙水平与血离子钙水平呈显著正相关(r=0.526,P=0.025)。结论 母亲孕期补充维生素D可增加新生儿血总钙及离子钙水平,而单纯补充钙剂可能不能增加新生儿血总钙及离子钙水平。新生儿低体温可能会造成血钙降低。智能尿检系统检测的新生儿尿钙水平与血离子钙水平呈正相关。
Objective To study the association of neonatal blood calcium levels with perinatal factors and neonatal urinary calcium levels measured by an intelligent urine test system. Methods The medical data of 96 full-term singleton neonates with mild diseases were collected by a cross-sectional survey, who were hospitalized in the Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, from June to August 2018. Urinary calcium levels measured by an intelligent urine test system, total blood calcium levels, ionized calcium levels, and the mother's calcium and vitamin D supplementation during pregnancy were recorded. Results Compared with the group without vitamin D supplementation for the mother (17 neonates), the group with vitamin D supplementation for the mother (79 neonates) had significantly higher levels of total blood calcium and ionized calcium (P < 0.05).The group with both vitamin D and calcium supplementation for the mother (68 neonates) had significantly higher levels of ionized calcium than controls (28 neonate) (P=0.05). There was no significant difference in the levels of total blood calcium and ionized calcium between the group with calcium supplementation for the mother (74 neonates) and the group without calcium supplementation for the mother (22 neonates) (P > 0.05). The hypothermia group (5 neonates) had a significantly lower level of total blood calcium than the normal body temperature group (91 neonates) (P < 0.05). There was a significantly positive correlation between the maternal blood total calcium level and the neonatal blood total calcium and ionized calcium levels (r=0.881 and 0.703 respectively; P < 0.05). The neonatal urinary calcium level measured by the intelligent urine test system was significantly correlated with the blood ionized calcium level (r=0.526, P=0.025). Conclusions Vitamin D supplementation during pregnancy can increase the blood levels of total calcium and ionized calcium in neonates, and calcium supplementation alone cannot increase the blood levels of total calcium or ionized calcium in neonates. Hypothermia in neonates might cause the reduction in blood calcium levels. The urinary calcium level measured by the intelligent urine test system is positively correlated with the blood level of ionized calcium.
血钙 / 离子钙 / 尿钙 / 围生期 / 智能尿检系统 / 新生儿
Blood calcium / Ionized calcium / Urinary calcium / Perinatal period / Intelligent urine test system / Neonate
[1] Jain A, Agarwal R, Sankar MJ, et al. Hypocalcemia in the newborn[J]. Indian J Pediatr, 2010, 77(10):1123-1128. DOI:10.1007/s12098-010-0176-0. PMID:20737250.
[2] Horigane SI, Ozawa Y, Yamada H, et al. Calcium signalling:a key regulator of neuronal migration[J]. J Biochem, 2019, 165(5):401-409. DOI:10.1093/jb/mvz012. PMID:30753600.
[3] Im YJ, Lee JK, Lee SH, et al. Developmental changes in contractile responses to cholinergic stimuli:role of calcium sensitization and related pathways[J]. Am J Physiol Renal Physiol, 2017, 313(2):F370-F377. DOI:10.1152/ajprenal.00597.2016. PMID:28446461.
[4] Hauck F, Blumenthal B, Fuchs S, et al. SYK expression endows human ZAP70-deficient CD8 T cells with residual TCR signaling[J]. Clin Immunol, 2015, 161(2):103-109. DOI:10.1016/j.clim.2015.07.002. PMID:26187144.
[5] Aggarwal K, Sandhu s, Narang GS, et al. Prevalence of neonatal hypocalcemia and its relation to supplementation[J]. Int J Curr Res Biol Med, 2018, 3(10):43-47. DOI:10.22192/ijcrbm.2018.03.10.005.
[6] 于昕平, 郭敏哲, 孙平辉. 长春市0~6岁儿童矿物质缺乏情况的调查[J]. 中国妇幼健康研究, 2010, 21(1):44-46. DOI:10.3969/j.issn.1673-5293.2010.01.015.
[7] Wang L, Guo Y, Han J, et al. Establishment of the intelligent verification criteria for a routine urinalysis analyzer in a multi-center study[J]. Clin Chem Lab Med, 2019, 57(12):1923-1932. DOI:10.1515/cclm-2019-0344. PMID:31415235.
[8] Martinez-Vernon AS, Covington JA, Arasaradnam RP, et al. An improved machine learning pipeline for urinary volatiles disease detection:diagnosing diabetes[J]. PLoS One, 2018, 13(9):e0204425. DOI:10.1371/journal.pone.0204425. PMID:30261000.
[9] Birková A, Oboril J, Kréta R, et al. Human fluorescent profile of urine as a simple tool of mining in data from autofluorescence spectroscopy[J]. Biomed Signal Process Control, 2020, 56:101693. DOI:10.1016/j.bspc.2019.101693.
[10] Burton RJ, Albur M, Eberl M, et al. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections[J]. BMC Med Inform Decis Mak, 2019, 19(1):171. DOI:10.1186/s12911-019-0878-9. PMID:31443706.
[11] Zhang HT, Dong T. Identification of biomarkers with different classifiers in urine test[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018:2905-2908. DOI:10.1109/EMBC.2018.8513030. PMID:30441008.
[12] Han ZZ, Liu HL, Meng J, et al. Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy[J]. Anal Chem, 2015, 87(18):9500-9506. DOI:10.1021/acs.analchem.5b02899. PMID:26305415.
[13] Ghosh P, Bhattacharjee D, Nasipuri M. Intelligent toilet system for non-invasive estimation of blood-sugar level from urine[J]. IRBM, 2020, 41(2):94-105. DOI:10.1016/j.irbm.2019.10.005.
[14] Ra M, Muhammad MS, Lim C, et al. Smartphone-based point-of-care urinalysis under variable illumination[J]. IEEE J Transl Eng Health Med, 2018, 6:2800111. DOI:10.1109/JTEHM.2017.2765631. PMID:29333352.
[15] 刘洋, 李辉, 张亚锨, 等. 2015年九城市婴幼儿前囟发育状况调查[J]. 中华儿科杂志, 2017, 55(8):602-607. DOI:10.3760/cma.j.issn.0578-1310.2017.08.011. PMID:28822436.
[16] 段一凡, 王杰, 姜珊, 等. 2010-2012年中国孕妇腓肠肌痉挛发生率及其相关因素[J]. 中华预防医学杂志, 2018, 52(1):14-20. DOI:10.3760/cma.j.issn.0253-9624.2018.01.004. PMID:29334702.
[17] Yang N, Wang LL, Li ZX, et al. Effects of vitamin D supplementation during pregnancy on neonatal vitamin D and calcium concentrations:a systematic review and meta-analysis[J]. Nutr Res, 2015, 35(7):547-556. DOI:10.1016/j.nutres.2015.04.010. PMID:25953481.
[18] Sethi A, Priyadarshi M, Agarwal R. Mineral and bone physiology in the foetus, preterm and full-term neonates[J]. Semin Fetal Neonatal Med, 2020, 25(1):101076. DOI:10.1016/j.siny.2019.101076. PMID:31882392.
[19] Fedakâr A. Vitamin D deficiency, prevalence and treatment in neonatal period[J]. Endocr Metab Immune Disord Drug Targets, 2019, 19(6):866-873. DOI:10.2174/1871530319666190215152045. PMID:30857517.
[20] 周凌云, 王毅, 罗霞. 孕期钙营养指导对新生儿骨密度和骨代谢水平的影响[J]. 中国妇幼健康研究, 2019, 30(4):466-469. DOI:10.3969/j.issn.1673-5293.2019.04.013.
[21] Karras SN, Koufakis T, Antonopoulou V, et al. Vitamin D receptor Fokl polymorphism is a determinant of both maternal and neonatal vitamin D concentrations at birth[J]. J Steroid Biochem Mol Biol, 2020, 199:105568. DOI:10.1016/j.jsbmb.2019.105568. PMID:31870913.
[22] Ariyawatkul K, Lersbuasin P. Prevalence of vitamin D deficiency in cord blood of newborns and the association with maternal vitamin D status[J]. Eur J Pediatr, 2018, 177(10):1541-1545. DOI:10.1007/s00431-018-3210-2. PMID:30027298.
[23] Gupta M, Debnath A, Jain S, et al. Vitamin D status in pregnancy:fetomaternal outcome and correlation with cord blood vitamin D[J]. Indian J Med Biochem, 2017, 21(1):42-48. DOI:10.5005/jp-journals-10054-0018. PMID:33707897.
[24] Y?lmaz B, Aygün C, Çetino?lu E. Vitamin D levels in newborns and association with neonatal hypocalcemia[J]. J Matern Fetal Neonatal Med, 2018, 31(14):1889-1893. DOI:10.1080/14767058.2017.1331430. PMID:28610460.
[25] Chhina AS, Shenoi A, Nagendra N, et al. Vitamin D and metabolic bone parameters in preterm neonates[J]. Indian Pediatr, 2016, 53(11):1023-1024. DOI:10.1007/s13312-016-0982-1. PMID:27889736.
[26] Marya RK. Calcium homeostasis during pregnancy and lactation:role of vitamin D supplementation[J]. Internet J Med Update, 2018, 13(1):15-21. DOI:10.4314/ijmu.v13i1.4.
[27] Cho WI, Yu HW, Chung HR, et al. Clinical and laboratory characteristics of neonatal hypocalcemia[J]. Ann Pediatr Endocrinol Metab, 2015, 20(2):86-91. DOI:10.6065/apem.2015.20.2.86. PMID:26191512.
[28] Bi WG, Nuyt AM, Weiler H, et al. Association between vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality:a systematic review and meta-analysis[J]. JAMA Pediatr, 2018, 172(7):635-645. DOI:10.1001/jamapediatrics.2018.0302. PMID:29813153.
[29] Hewison M. The earlier the better:preconception vitamin D and protection against pregnancy loss[J]. Lancet Diabetes Endocrinol, 2018, 6(9):680-681. DOI:10.1016/S2213-8587(18)30178-5. PMID:29884467.
[30] Anastasiou A, Karras SN, Bais A, et al. Ultraviolet radiation and effects on humans:the paradigm of maternal vitamin D production during pregnancy[J]. Eur J Clin Nutr, 2017, 71(11):1268-1272. DOI:10.1038/ejcn.2016.188. PMID:27677369.
[31] 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 4版. 北京:人民卫生出版社, 2011:242.