
弓形虫感染患儿淋巴细胞亚群及干扰素-γ 的变化及临床意义
Changes in lymphocyte subsets and serum IFN-γ levels in children with toxoplasma infection
目的 探讨淋巴细胞各亚群及细胞免疫应答产物干扰素-γ(IFN-γ)水平在弓形虫感染患儿细胞免疫应答中的变化趋势及临床意义。方法 选取2011 年1 月至2014 年4 月检测出Tox-IgM 阳性的34 例患儿为Tox-IgM 阳性组,同时选取既往感染的TOX-IgG 阳性患儿12 例为TOX-IgG 阳性组,另选取行健康体检的健康儿童54 例为对照组。应用流式细胞仪检测各组外周血淋巴细胞CD4+、CD8+、CD19+ 和NK 细胞水平,并计算CD4+/CD8+ 比值;采用酶联免疫吸附试验(ELISA)检测各组患儿血清中IFN-γ 的水平。结果 Tox-IgM 阳性组患儿CD4+、CD4+/CD8+ 比值明显低于TOX-IgG 阳性组和对照组,CD8+、NK 细胞和血清IFN-γ 水平高于TOXIgG阳性组和对照组(P<0.05)。TOX-IgG 阳性组患儿血清IFN-γ 水平高于对照组(P<0.05)。Tox-IgM 阳性组患儿CD8+ 水平与血清IFN-γ 水平呈正相关(r=0.756,P<0.05)。结论 CD4+、CD8+ 以及NK 细胞等免疫细胞及其免疫应答产物IFN-γ 水平变化在弓形虫感染过程中发挥着重要的作用。
Objective To study the changes and significance of lymphocyte sunsets and serum interferon-γ (IFN-γ) levels in children with toxoplasma infection. Methods Thirty-four children who were newly diagnosed with toxoplasma infection (TOX-IgM+ group) between January 2011 and April 2014, 12 children who had ever been diagnosed with toxoplasma infection (TOX-IgG+ group), and 54 healthy children (control group) were enrolled. The percentages of CD4+, CD8+, CD19+ and NK cells in peripheral blood lymphocytes were detected by flow cytometry. Serum levels of IFN-γ were measured using ELISA. Results The percentages of CD4+ cells and the CD4+/CD8+ ratio in the TOX-IgM+ group were significantly lower than in the TOX-IgG+ and control groups, while the percentages of CD8+ and NK cells and serum IFN-γ levels were significantly higher than in the other two groups (P<0.05). The TOXIgG+ group had higher serum IFN-γ levels than the control group (P<0.05). There was a positive correlation between the percentage of CD8+ cells and serum IFN-γ levels in the TOX-IgM+ group (r=0.756; P<0.05). Conclusions CD4+, CD8+ and NK cells may play important roles in the resistance against toxoplasma infection by promoting the secretion of cytokines.
淋巴细胞亚群 / &gamma / 干扰素 / 弓形虫 / 儿童
Lymphocyte subsets / Interferon-γ / Toxoplasma gondii / Child
[1] 姚天一, 张志坤. 弓形虫感染与围生儿预后[J]. 中国实用妇科和产科杂志, 2005, 2(6): 339-341.
[2] 廖洪, 郭奕明, 徐龙, 等. 807 例住院儿童弓形虫感染调查分析[J]. 中国当代儿科杂志, 2002, 4(4): 291-293.
[3] 彭鸿娟. 刚地弓形虫纳虫泡的形成机制及其作用[J]. 中国寄 生虫学及寄生虫病杂志, 2010, 28(5): 382-386.
[4] Jankovic D, Kugler DG, Sher A, et al. IL-10 production by CD4+ effector T cell: a mechanism for self regulation[J]. Mucosal Immunol, 2010, 3(3): 239-246.
[5] 杨生海, 殷宏, 刘永生, 等. 干扰素-γ 研究进展[J]. 生物技术通报, 2010, 8(1): 29-33.
[6] 蒋灿华. NK 细胞抗肿瘤免疫效应机制研究进展[J]. 国外医 学肿瘤学分册, 2004, 31(7): 486-489.
[7] 李永念, 包怀恩. BALB/c 小鼠感染弓形虫后Th1/Th2 免疫漂 移的实验研究[J]. 中国免疫学杂志, 2009, 3(25): 209-212.
[8] Kim WH, Shin EH, Kim JL, et al. Suppression of CD4+ T-cells in the spleen of mice infection with toxoplasma gondii KI-I tachyzoites[J]. Korean J Parasitol, 2010, 48(4): 325-329.
[9] Mandell GL, Bennett JE, Dolin R. Toxoplasma gondii[M]// Desmonts G. Principles and practice of infectious diseases. 5th ed. Beijing: Science Press, 2001: 2687.
[10] Cui W, Kaech SM. Generation of effector CD8+ T cells and their conversion to memory T cells[J]. Immunol Rev, 2010, 236: 151-166.
[11] Gigley JP, Bhadra R, Khan IA. CD8+ T cells and toxoplasma gondii: a new paradigm[J]. J Parasitol Res, 2011, 2011: 243796.
[12] 高冬梅, 赵俊, 夏圆圆, 等. 弓形虫先天感染与妊娠结局及脐带血T 淋巴细胞亚群构成的关系[J]. 中华预防医学杂志, 2012, 46(1): 64-66.
[13] Werry EJ. T cell exhaustion[J]. Nat Immunol, 2011, 12(6): 492-499.
[14] 李越, 陈伟, 范雄林, 等. Granulysin 的研究进展[J]. 细胞与分子免疫学杂志, 2002, 18(5): 108-109.
[15] Miller CM, Boulter NR, Ikin RJ, et al. The immunobiology of the innate response to toxoplasma gondii[J]. Int J Parasitol, 2009, 39(1): 23-39.