
基于生物信息学分析microRNA-495-5p在早产儿支气管肺发育不良中的表达及其临床意义
孙祎璠, 马俐, 龚小慧, 洪文超, 蔡成
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (1) : 24-30.
基于生物信息学分析microRNA-495-5p在早产儿支气管肺发育不良中的表达及其临床意义
Expression of microRNA-495-5p in preterm infants with bronchopulmonary dysplasia: a bioinformatics analysis
目的 探讨支气管肺发育不良(BPD)早产儿血清中microRNA-495-5p(miRNA-495-5p)的表达变化并对其进行生物信息学分析,为深入研究miRNA-495-5p与BPD的关系提供理论依据。方法 收集2015年1月至2016年12月NICU住院治疗早产儿的一般临床资料,选取具有早期BPD临床表现的20例患儿为BPD组,无早期BPD临床表现的20例患儿为对照组。采集两组患儿末梢外周血,每组各随机选取5例患儿,应用miRNA芯片技术筛选两组患儿血清中差异性表达的miRNAs;每组各随机选取6例患儿,采用RT-PCR技术再次验证其差异性表达。应用TargetScan、miRDB、miRWalk数据库对miRNA-495-5p进行靶基因预测;采用DAVID数据库对靶基因进行基因功能富集分析和信号转导通路富集分析。结果 与对照组患儿相比,BPD组患儿血清miRNA-495-5p表达显著上调(P < 0.05)。通过3种数据库预测miRNA-495-5p的靶基因共有117个,其靶基因功能分别富集于转录调节活性、转录激活活性、转录辅助激活活性等分子功能,代谢过程的调控、依赖DNA的转录调控、血管模式等生物学过程,以及核质、膜组分、不溶性组分等细胞组分上(P < 0.05);信号转导通路则显著富集于mTOR信号通路中(P < 0.05)。结论 miRNA-495-5p可能通过调控新生血管生成、干细胞分化、细胞凋亡及自噬等参与BPD的发生发展,为后续深入研究其在BPD中的作用及功能机制提供了重要线索。
Objective To study the expression of microRNA-495-5p (miRNA-495-5p) in the serum of preterm infants with bronchopulmonary dysplasia (BPD) based on a bioinformatics analysis, and to provide a theoretical basis for further research on the association between miRNA-495-5p and BPD. Methods A total of 40 preterm infants who were admitted to the neonatal intensive care unit from January 2015 to December 2016 were enrolled. Among these infants, 20 with early clinical manifestations of BPD were enrolled as the BPD group, and 20 without such manifestations were enrolled as the control group. Peripheral blood samples were collected. The miRNA microarray technique was used to screen out differentially expressed miRNAs in serum between the two groups. RT-PCR was used for validation of results. TargetScan, miRDB, and miRWalk databases were used to predict the target genes of miRNA-495-5p. The DAVID database was used to perform gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the target genes. Results Compared with the control group, the BPD group had a significant increase in the expression of miRNA-495-5p in serum (P < 0.05). A total of 117 target genes of miRNA-495-5p were predicted by the above three databases and they were involved in several molecular functions (including transcriptional regulatory activity, transcriptional activation activity, and transcription cofactor activity), biological processes (such as metabolic regulation, DNA-dependent transcriptional regulation, and vascular pattern), and cell components (including nucleoplasm, membrane components, and insoluble components) (P < 0.05). As for signaling pathways, these genes were significantly enriched in the mTOR signaling pathway (P < 0.05). Conclusions MiRNA-495-5p may be involved in the development and progression of BPD by regulating angiogenesis, stem cell differentiation, apoptosis, and autophagy, which provides clues for further research on the role and functional mechanism of miRNA-495-5p in BPD.
支气管肺发育不良 / microRNA-495-5p / 生物信息学 / 早产儿
Bronchopulmonary dysplasia / microRNA-495-5p / Bioinformatics / Preterm infant
[1] Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia:a review of pathogenesis and pathophysiology[J]. Respir Med, 2017, 132:170-177.
[2] Bancalari E, Jain D. Bronchopulmonary dysplasia:50 years after the original description[J]. Neonatology, 2019, 115(4):384-391.
[3] Ballard PL. Hormonal regulation of pulmonary surfactant[J]. Endocr Rev, 1989, 10(2):165-181.
[4] Gross I. Regulation of fetal lung maturation[J]. Am J Physiol, 1990, 259(6 Pt 1):L337-L344.
[5] Herriges M, Morrisey EE. Lung development:orchestrating the generation and regeneration of a complex organ[J]. Development, 2014, 141(3):502-513.
[6] Bhaskaran M, Wang Y, Zhang H, et al. MicroRNA-127 modulates fetal lung development[J]. Physiol Genomics, 2009, 37(3):268-278.
[7] Sun YF, Kan Q, Yang Y, et al. Knockout of microRNA26a promotes lung development and pulmonary surfactant synthesis[J]. Mol Med Rep, 2018, 17(4):5988-5995.
[8] Nana-Sinkam SP, Karsies T, Riscili B, et al. Lung microRNA:from development to disease[J]. Expert Rev Respir Med, 2009, 3(4):373-385.
[9] Zhao X, Wang T, Cai B, et al. MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1[J]. Am J Transl Res, 2019, 11(4):2232-2244.
[10] Yang Y, Pu XD, Qing K, et al. Identification of differentially expressed microRNAs and the possible role of miRNA-126* in Sprague-Dawley rats during fetal lung development[J]. Mol Med Rep, 2013, 7(1):65-72.
[11] 邵肖梅, 叶鸿瑁, 邱小汕. 实用新生儿学[M].第4版. 人民卫生出版社, 2018:416-422.
[12] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[13] Ahmadi A, Khansarinejad B, Hosseinkhani S, et al. miR-199a-5p and miR-495 target GRP78 within UPR pathway of lung cancer[J]. Gene, 2017, 620:15-22.
[14] Welten SM, Bastiaansen AJ, de Jong RC, et al. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia[J]. Circ Res, 2014, 115(8):696-708.
[15] Collison A, Herbert C, Siegle JS, et al. Altered expression of microRNA in the airway wall in chronic asthma:miR-126 as a potential therapeutic target[J]. BMC Pulm Med, 2011, 11:29.
[16] Sun C, Zhang S, Wang J, et al. EPO enhances the protective effects of MSCs in experimental hyperoxia-induced neonatal mice by promoting angiogenesis[J]. Aging (Albany NY), 2019, 11(8):2477-2487.
[17] Leeman KT, Pessina P, Lee JH, et al. Mesenchymal stem cells increase alveolar differentiation in lung progenitor organoid cultures[J]. Sci Rep, 2019, 9(1):6479.
[18] Mei Y, Chen C, Dong H, et al. Treatment of hyperoxia-induced lung injury with lung mesenchymal stem cells in mice[J]. Stem Cells Int, 2018, 2018:5976519.
[19] 宋晓红, 刘明明. mTOR信号通路与相关疾病的研究进展[J]. 微循环学杂志, 2018, 28(3):64-70.
[20] Liu Y, Pejchinovski M, Wang X, et al. Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease[J]. Sci Rep, 2018, 8(1):5584.
[21] Wang J, Feng W, Dong Y, et al. MicroRNA-495 regulates human gastric cancer cell apoptosis and migration through Akt and mTOR signaling[J]. Oncol Rep, 2018, 40(6):3654-3662.
[22] Sureshbabu A, Syed M, Das P, et al. Inhibition of regulatory-associated protein of mechanistic target of rapamycin prevents hyperoxia-induced lung injury by enhancing autophagy and reducing apoptosis in neonatal mice[J]. Am J Respir Cell Mol Biol, 2016, 55(5):722-735.
国家自然科学基金(81571467)。