目的 探讨缝隙连接阻断剂奎宁(quinine,QUIN)、甘珀酸(carbenoxolone,CBX)对癫痫大鼠海马涟波(ripple)振荡能量变化的影响。 方法 24只大鼠随机分为模型组、丙戊酸(valproate sodium,VPA)组、QUIN组和CBX组(n=6)。建立氯化锂-匹罗卡品(pilocarpine,PILO)癫痫持续状态(status epilepticus,SE)大鼠模型,VPA组、QUIN组和CBX组在注射PILO前3 d,分别给予VPA(抗癫痫一线药物)200 mg/kg灌胃、QUIN 50 mg/kg腹腔注射、CBX 50 mg/kg腹腔注射。脑电图分析各组大鼠造模前后及推注水合氯醛(止痫)前后海马ripple振荡能量改变。 结果 造模前,正常大鼠海马CA1、CA3、齿状回区均可见ripple振荡表达。与建模前1 d比较,注射PILO后10 min,各组ripple平均能量表达逐渐增强,模型组、VPA组和CBX组在止痫前达到最高峰,QUIN组在PILO注射后60 min达到最高峰(P<0.05)。止痫后,3个干预组ripple平均能量恢复至正常水平;模型组在止痫后1 h ripple平均能量恢复至正常水平;且各组均持续正常水平至SE后3 d。ripple最大能量的变化趋势与平均能量类似。 结论 ripple振荡能量改变可以作为癫痫发作早期预警的定量指标;发作间期ripple振荡能量对癫痫的发作并无提示作用;缝隙连接阻断剂可下调癫痫发作期ripple振荡能量。
Abstract
Objective To study the effect of gap junction blockers, quinine (QUIN) and carbenoxolone (CBX), on hippocampal ripple energy expression in rats with status epilepticus (SE). Methods A total of 24 rats were randomly divided into four groups: model, QUIN, valproic acid (VPA), and CBX (n=6 each). A rat model of SE induced by lithium-pilocarpine (PILO) was prepared. The QUIN, VPA, and CBX groups were given intraperitoneal injection of QUIN (50 mg/kg), VPA by gavage (200 mg/kg), and intraperitoneal injection of CBX (50 mg/kg) respectively, at 3 days before PILO injection. Electroencephalography was used to analyze the change in hippocampal ripple energy before and after modeling, as well as before and after chloral hydrate injection to control seizures. Results Ripple expression was observed in the hippocampal CA1, CA3, and dentate gyrus regions of normal rats. After 10 minutes of PILO injection, all groups had a gradual increase in mean ripple energy expression compared with 1 day before modeling, with the highest expression level before chloral hydrate injection in the model, VPA and CBX groups (P<0.05). The QUIN group had the highest expression level of mean ripple energy 60 minutes after PILO injection. The mean ripple energy returned to normal levels in the three intervention groups immediately after chloral hydrate injection, while in the model group, the mean ripple energy returned to normal levels 1 hour after chloral hydrate injection. The mean ripple energy remained normal till to day 3 after SE in the four groups. The changing trend of maximum ripple energy was similar to that of mean ripple energy. Conclusions The change in ripple energy can be used as a quantitative indicator for early warning of seizures, while it cannot predict seizures in the interictal period. Gap junction blockers can reduce ripple energy during seizures.
关键词
癫痫持续状态 /
涟波振荡 /
缝隙连接阻断剂 /
大鼠
Key words
Status epilepticus /
Ripple oscillation /
Gap junction blocker /
Rat
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 H?ller P, Trinka E, H?ller Y. MEEGIPS-a modular EEG investigation and processing system for visual and automated detection of high frequency oscillations[J]. Front Neuroinform, 2019, 13: 20. DOI: 10.3389/fninf.2019.00020. PMID: 31024284. PMC6460903.
2 Park CJ, Hong SB. High frequency oscillations in epilepsy: detection methods and considerations in clinical application[J]. J Epilepsy Res, 2019, 9(1): 1-13. DOI: 10.14581/jer.19001. PMID: 31482052.
3 Zijlmans M, Jiruska P, Zelmann R, et al. High-frequency oscillations as a new biomarker in epilepsy[J]. Ann Neurol, 2012, 71(2): 169-178. DOI: 10.1002/ana.22548. PMID: 22367988. PMCID: PMC3754947.
4 Ran X, Xiang J, Song PP, et al. Effects of gap junctions blockers on fast ripples and connexin in rat hippocampi after status epilepticus[J]. Epilepsy Res, 2018, 146: 28-35. DOI: 10.1016/j.eplepsyres.2018.07.010. PMID: 30056318.
5 Song PP, Xiang J, Jiang L, et al. Dynamic changes in spectral and spatial signatures of high frequency oscillations in rat hippocampi during epileptogenesis in acute and chronic stages[J]. Front Neurol, 2016, 7: 204. DOI: 10.3389/fneur.2016.00204. PMID: 27965619. PMCID: PMC5124575.
6 包新民, 舒斯云. 大鼠脑立体定位图谱[M]. 北京: 人民卫生出版社, 1991.
7 Kazemi M, Shokri S, Ganjkhani M, et al. Modulation of axonal sprouting along rostro-caudal axis of dorsal hippocampus and no neuronal survival in parahippocampal cortices by long-term post-lesion melatonin administration in lithium-pilocarpine model of temporal lobe epilepsy[J]. Anat Cell Biol, 2016, 49(1): 21-33. DOI: 10.5115/acb.2016.49.1.21. PMID: 27051565. PMCID: PMC4819075.
8 Xiang J, Korman A, Samarasinghe KM, et al. Volumetric imaging of brain activity with spatial-frequency decoding of neuromagnetic signals[J]. J Neurosci Methods, 2015, 239: 114-128. DOI: 10.1016/j.jneumeth.2014.10.007. PMID: 25455340.
9 Lévesque M, Shiri Z, Chen LY, et al. High-frequency oscillations and mesial temporal lobe epilepsy[J]. Neurosci Lett, 2018, 667: 66-74. DOI: 10.1016/j.neulet.2017.01.047. PMID: 28115239.
10 Amiri M, Lina JM, Pizzo F, et al. High frequency oscillations and spikes: separating real HFOs from false oscillations[J]. Clin Neurophysiol, 2016, 127(1): 187-196. DOI: 10.1016/j.clinph.2015.04.290. PMID: 26100149.
11 Zijlmans M, Worrell GA, Dümpelmann M, et al. How to record high-frequency oscillations in epilepsy: a practical guideline[J]. Epilepsia, 2017, 58(8): 1305-1315. DOI: 10.1111/epi.13814. PMID: 28622421.
12 Namazi H, Kulish VV, Hussaini J, et al. A signal processing based analysis and prediction of seizure onset in patients with epilepsy[J]. Oncotarget, 2016, 7(1): 342-350.
13 Engel JJ, da Silva FL. High-frequency oscillations—where we are and where we need to go[J]. Prog Neurobiol, 2012, 98(3): 316-318. DOI: 10.1016/j.pneurobio.2012.02.001. PMID: 22342736. PMCID: PMC3374035.
14 Jacobs J, Zelmann R, Jirsch J, et al. High frequency oscillations (80-500 Hz) in the preictal period in patients with focal seizures[J]. Epilepsia, 2009, 50(7): 1780-1792. DOI: 10.1111/j.1528-1167.2009.02067.x. PMID: 19400871. PMCID: PMC3764053.
15 Ferrari-Marinho T, Perucca P, Mok K, et al. Pathologic substrates of focal epilepsy influence the generation of high-frequency oscillations[J]. Epilepsia, 2015, 56(4): 592-598. DOI: 10.1111/epi.12940. PMID: 25754852.
16 Zhang LY, Fan DG, Wang QY. Synchronous high-frequency oscillations in inhibitory-dominant network motifs consisting of three dentate gyrus-CA3 systems[J]. Chaos, 2018, 28(6): 063101. DOI: 10.1063/1.5017012. PMID: 29960405.
17 Mylvaganam S, Ramani M, Krawczyk M, et al. Roles of gap junctions, connexins, and pannexins in epilepsy[J]. Front Physiol, 2014, 5: 172. DOI: 10.3389/fphys.2014.00172. PMID: 24847276. PMCID: PMC4019879.
18 Davidson JS, Baumgarten IM. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships[J]. J Pharmacol Exp Ther, 1988, 246(3): 1104-1107. PMID:3418512.
19 Franco-Pérez J, Ballesteros-Zebadúa P, Manjarrez-Marmolejo J. Unilateral microinjection of carbenoxolone into the pontis caudalis nucleus inhibits the pentylenetetrazole-induced epileptiform activity in rats[J]. Neurosci Lett, 2015, 602: 38-43. DOI: 10.1016/j.neulet.2015.06.037. PMID: 26141611.
20 Franco-Pérez J, Ballesteros-Zebadúa P, Manjarrez-Marmolejo J. Anticonvulsant effects of mefloquine on generalized tonic-clonic seizures induced by two acute models in rats[J]. BMC Neurosci, 2015, 16: 7. DOI: 10.1186/s12868-015-0145-7. PMID: 25886955. PMCID: PMC4411716.
21 Moinfar Z, Dambach H, Faustmann PM. Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro[J]. Front Physiol, 2014, 5: 186. DOI: 10.3389/fphys.2014.00186. PMID: 24904426. PMCID: PMC4032976.
基金
国家自然科学基金(81301124;81971215)。