目的 探讨心脏停搏(cardiac arrest,CA)患儿发生急性肾损伤(acute kidney injury,AKI)的相关因素及预后的影响因素。 方法 回顾性收集2016年6月—2021年6月湖南省儿童医院儿童重症监护室发生CA患儿的病历资料。按CA恢复自发循环(return of spontaneous circulation,ROSC)48 h内是否发生AKI分为AKI组(n=50)和非AKI组(n=113),AKI组按ROSC 7 d时预后情况分为存活组(n=21)和死亡组(n=29)。采用多因素logistic回归分析CA患儿早期发生AKI的相关因素及预后影响因素。 结果 CA后AKI发生率为30.7%(50/163)。AKI组7 d及28 d病死率分别为58.0%(29/50)、78.0%(39/50),非AKI组为31.9%(36/113)、58.4%(66/113)。多因素logistic回归分析显示,心肺复苏时间长(OR=1.164,95%CI:1.088~1.246,P<0.001)、基线血清白蛋白低(OR=0.879,95%CI:0.806~0.958,P=0.003)、CA前应用肾上腺素(OR=2.791,95%CI:1.119~6.961,P=0.028)与CA后AKI发生密切相关;基线小儿危重病例评分低(OR=0.761,95%CI:0.612~0.945,P=0.014)、CA前应用肾上腺素(OR=7.018,95%CI:1.196~41.188,P=0.031)、CA前机械通气(OR=7.875,95%CI:1.358~45.672,P=0.021)与CA后AKI患儿死亡密切相关。 结论 CA后ROSC患儿应密切监测血清白蛋白,尤其是心肺复苏时间长、基线小儿危重病例评分低、CA前应用肾上腺素、CA前机械通气者应及早识别和干预,以降低AKI发生率和病死率。
Abstract
Objective To investigate the risk factors for acute kidney injury (AKI) in children with cardiac arrest (CA) and the influencing factors for prognosis. Methods A retrospective analysis was performed on the medical records of the children who developed CA in the pediatric intensive care unit (PICU) of Hunan Children's Hospital from June 2016 to June 2021. According to the presence or absence of AKI within 48 hours after return of spontaneous circulation (ROSC) for CA, the children were divided into two groups: AKI (n=50) and non-AKI (n=113). According to their prognosis on day 7 after ROSC, the AKI group was further divided into a survival group (n=21) and a death group (n=29). The multivariate logistic regression analysis was used to investigate the risk factors for early AKI in the children with CA and the influencing factors for prognosis. Results The incidence rate of AKI after CA was 30.7% (50/163). The AKI group had a 7-day mortality rate of 58.0% (29/50) and a 28-day mortality rate of 78.0% (39/50), and the non-AKI group had a 7-day mortality rate of 31.9% (36/113) and a 28-day mortality rate of 58.4% (66/113). The multivariate logistic regression analysis showed that long duration of cardiopulmonary resuscitation (OR=1.164, 95%CI: 1.088-1.246, P<0.001), low baseline albumin (OR=0.879, 95%CI: 0.806-0.958, P=0.003), and adrenaline administration before CA (OR=2.791, 95%CI: 1.119-6.961, P=0.028) were closely associated with the development of AKI after CA, and that low baseline pediatric critical illness score (OR=0.761, 95%CI: 0.612-0.945, P=0.014), adrenaline administration before CA (OR=7.018, 95%CI: 1.196-41.188, P=0.031), and mechanical ventilation before CA (OR=7.875, 95%CI: 1.358-45.672, P=0.021) were closely associated with the death of the children with AKI after CA. Conclusions Albumin should be closely monitored for children with ROSC after CA, especially for those with long duration of cardiopulmonary resuscitation, low baseline pediatric critical illness score, adrenaline administration before CA, and mechanical ventilation before CA, and such children should be identified and intervened as early as possible to reduce the incidence of AKI and the mortality rate.
关键词
心脏停搏 /
急性肾损伤 /
儿童重症监护室 /
儿童
Key words
Cardiac arrest /
Acute kidney injury /
Pediatric intensive care unit /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Dutta A, Hari KJ, Azizian J, et al. Incidence, predictors, and prognosis of acute kidney injury among cardiac arrest survivors[J]. J Intensive Care Med, 2021, 36(5): 550-556. PMID: 32242492. DOI: 10.1177/0885066620911353.
2 Para E, Azizo?lu M, Sagün A, et al. Association between acute kidney injury and mortality after successful cardiopulmonary resuscitation: a retrospective observational study[J]. Braz J Anesthesiol, 2022, 72(1): 122-127. PMID: 34823839. PMCID: PMC9373421. DOI: 10.1016/j.bjane.2021.02.026.
3 Domanovits H, Schillinger M, Müllner M, et al. Acute renal failure after successful cardiopulmonary resuscitation[J]. Intensive Care Med, 2001, 27(7): 1194-1199. PMID: 11534568. DOI: 10.1007/s001340101002.
4 Patyna S, Riekert K, Buettner S, et al. Acute kidney injury after in-hospital cardiac arrest in a predominant internal medicine and cardiology patient population: incidence, risk factors, and impact on survival[J]. Ren Fail, 2021, 43(1): 1163-1169. PMID: 34315321. PMCID: PMC8330738. DOI: 10.1080/0886022X.2021.1956538.
5 Sandroni C, Dell'anna AM, Tujjar O, et al. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies[J]. Minerva Anestesiol, 2016, 82(9): 989-999. PMID: 26957119.
6 Mah KE, Alten JA, Cornell TT, et al. Acute kidney injury after in-hospital cardiac arrest[J]. Resuscitation, 2021, 160: 49-58. PMID: 33450335. PMCID: PMC7902429. DOI: 10.1016/j.resuscitation.2020.12.023.
7 Ca?ete P, Fernández A, Solís A, et al. Incidence and prognosis of acute kidney injury after cardiac arrest in children[J]. Nephron, 2019, 141(1): 18-23. PMID: 30343292. DOI: 10.1159/000493471.
8 Cornell TT, Selewski DT, Alten JA, et al. Acute kidney injury after out of hospital pediatric cardiac arrest[J]. Resuscitation, 2018, 131: 63-68. PMID: 30075198. PMCID: PMC6544025. DOI: 10.1016/j.resuscitation.2018.07.362.
9 Neumayr TM, Gill J, Fitzgerald JC, et al. Identifying risk for acute kidney injury in infants and children following cardiac arrest[J]. Pediatr Crit Care Med, 2017, 18(10): e446-e454. PMID: 28737594. PMCID: PMC5628129. DOI: 10.1097/PCC.0000000000001280.
10 Topjian AA, Raymond TT, Atkins D, et al. Part 4: pediatric basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142(16_suppl_2): S469-S523. PMID: 33081526. DOI: 10.1161/CIR.0000000000000901.
11 Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1)[J]. Crit Care, 2013, 17(1): 204. PMID: 23394211. PMCID: PMC4057151. DOI: 10.1186/cc11454.
12 Mustafa K, Buckley H, Feltbower R, et al. Epidemiology of cardiopulmonary resuscitation in critically ill children admitted to pediatric intensive care units across England: a multicenter retrospective cohort study[J]. J Am Heart Assoc, 2021, 10(9): e018177. PMID: 33899512. PMCID: PMC8200770. DOI: 10.1161/JAHA.120.018177.
13 Holmberg MJ, Ross CE, Fitzmaurice GM, et al. Annual incidence of adult and pediatric in-hospital cardiac arrest in the United States[J]. Circ Cardiovasc Qual Outcomes, 2019, 12(7): e005580. PMID: 31545574. PMCID: PMC6758564.
14 Topjian AA, de Caen A, Wainwright MS, et al. Pediatric post-cardiac arrest care: a scientific statement from the American Heart Association[J]. Circulation, 2019, 140(6): e194-e233. PMID: 31242751. DOI: 10.1161/CIR.0000000000000697.
15 Burne-Taney MJ, Kofler J, Yokota N, et al. Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury[J]. Am J Physiol Renal Physiol, 2003, 285(1): F87-F94. PMID: 12657560. DOI: 10.1152/ajprenal.00026.2003.
16 Natanov R, Gueler F, Falk CS, et al. Blood cytokine expression correlates with early multi-organ damage in a mouse model of moderate hypothermia with circulatory arrest using cardiopulmonary bypass[J]. PLoS One, 2018, 13(10): e0205437. PMID: 30308065. PMCID: PMC6181365. DOI: 10.1371/journal.pone.0205437.
17 Yu L, Gu T, Zhang G, et al. The deep hypothermic circulatory arrest causes more kidney malfunctions based on a novel rabbit model[J]. Ann Saudi Med, 2014, 34(6): 532-540. PMID: 25971829. PMCID: PMC6074567. DOI: 10.5144/0256-4947.2014.532.
18 Okada A, Okada Y, Kandori K, et al. Associations between initial serum pH value and outcomes of pediatric out-of-hospital cardiac arrest[J]. Am J Emerg Med, 2021, 40: 89-95. PMID: 33360395. DOI: 10.1016/j.ajem.2020.12.032.
19 Sanchez-Pinto LN, Khemani RG. Development of a prediction model of early acute kidney injury in critically ill children using electronic health record data[J]. Pediatr Crit Care Med, 2016, 17(6): 508-515. PMID: 27124567. DOI: 10.1097/PCC.0000000000000750.
20 Hansrivijit P, Yarlagadda K, Cheungpasitporn W, et al. Hypoalbuminemia is associated with increased risk of acute kidney injury in hospitalized patients: a meta-analysis[J]. J Crit Care, 2021, 61: 96-102. PMID: 33157311. DOI: 10.1016/j.jcrc.2020.10.013.
21 Thongprayoon C, Cheungpasitporn W, Mao MA, et al. U-shape association of serum albumin level and acute kidney injury risk in hospitalized patients[J]. PLoS One, 2018, 13(6): e0199153. PMID: 29927987. PMCID: PMC6013099. DOI: 10.1371/journal.pone.0199153.
22 Nie S, Tang L, Zhang W, et al. Are there modifiable risk factors to improve AKI?[J]. Biomed Res Int, 2017, 2017: 5605634. PMID: 28744467. PMCID: PMC5514336. DOI: 10.1155/2017/5605634.
23 Kaddourah A, Basu RK, Bagshaw SM, et al. Epidemiology of acute kidney injury in critically ill children and young adults[J]. N Engl J Med, 2017, 376(1): 11-20. PMID: 27959707. PMCID: PMC5322803. DOI: 10.1056/NEJMoa1611391.
基金
湖南省急危重症急救能力提升与突发公共卫生应急救治关键技术协同创新工程(2020SK1014-3)。