腺相关病毒介导的基因疗法在溶酶体贮积症中的应用

林雪芹, 王晓乐, 彭镜

中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (11) : 1281-1287.

PDF(619 KB)
HTML
PDF(619 KB)
HTML
中国当代儿科杂志 ›› 2022, Vol. 24 ›› Issue (11) : 1281-1287. DOI: 10.7499/j.issn.1008-8830.2207055
综述

腺相关病毒介导的基因疗法在溶酶体贮积症中的应用

  • 林雪芹, 王晓乐, 彭镜
作者信息 +

Application of adeno-associated virus-mediated gene therapy in lysosomal storage diseases

  • LIN Xue-Qin, WANG Xiao-Le, PENG Jing
Author information +
文章历史 +

摘要

溶酶体贮积症(lysosomal storage disorders,LSDs)是一组由溶酶体酶或功能相关蛋白缺陷所致的单基因遗传代谢性疾病。临床治疗以酶替代疗法为主,但该疗法对有神经系统症状的LSDs患者疗效较差。随着多组学、测序技术和生物工程学的快速发展,基因治疗已在LSDs患者中开展。腺相关病毒(adeno-associated virus,AAV)作为基因治疗的载体之一,在治疗遗传代谢性等疾病中具有较好的前景。越来越多的研究表明,AAV介导的基因治疗在LSDs中有效。该文就其在LSDs中的应用作一综述。

Abstract

Lysosomal storage disorders (LSDs) are a group of single-gene inherited metabolic diseases caused by defects in lysosomal enzymes or function-related proteins. Enzyme replacement therapy is the main treatment method in clinical practice, but it has a poor effect in patients with neurological symptoms. With the rapid development of multi-omics, sequencing technology, and bioengineering, gene therapy has been applied in patients with LSDs. As one of the vectors of gene therapy, adeno-associated virus (AAV) has good prospects in the treatment of genetic and metabolic diseases. More and more studies have shown that AAV-mediated gene therapy is effective in LSDs. This article reviews the application of AAV-mediated gene therapy in LSDs.

关键词

溶酶体贮积症 / 腺相关病毒 / 基因治疗

Key words

Lysosomal storage disease / Adeno-associated virus / Gene therapy

引用本文

导出引用
林雪芹, 王晓乐, 彭镜. 腺相关病毒介导的基因疗法在溶酶体贮积症中的应用[J]. 中国当代儿科杂志. 2022, 24(11): 1281-1287 https://doi.org/10.7499/j.issn.1008-8830.2207055
LIN Xue-Qin, WANG Xiao-Le, PENG Jing. Application of adeno-associated virus-mediated gene therapy in lysosomal storage diseases[J]. Chinese Journal of Contemporary Pediatrics. 2022, 24(11): 1281-1287 https://doi.org/10.7499/j.issn.1008-8830.2207055

参考文献

1 Giugliani R, Federhen A, Michelin-Tirelli K, et al. Relative frequency and estimated minimal frequency of lysosomal storage diseases in Brazil: report from a reference laboratory[J]. Genet Mol Biol, 2017, 40(1): 31-39. PMID: 28304074. PMCID: PMC5409780. DOI: 10.1590/1678-4685-GMB-2016-0268.
2 Platt FM, d'Azzo A, Davidson BL, et al. Lysosomal storage diseases[J]. Nat Rev Dis Primers, 2018, 4(1): 27. PMID: 30275469. DOI: 10.1038/s41572-018-0025-4.
3 Giugliani R, Vairo F, Kubaski F, et al. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS[J]. Lancet Child Adolesc Health, 2018, 2(1): 56-68. PMID: 30169196. DOI: 10.1016/S2352-4642(17)30087-1.
4 Nagree MS, Scalia S, McKillop WM, et al. An update on gene therapy for lysosomal storage disorders[J]. Expert Opin Biol Ther, 2019, 19(7): 655-670. PMID: 31056978. DOI: 10.1080/14712598.2019.1607837.
5 Broomfield A, Jones SA, Hughes SM, et al. The impact of the immune system on the safety and efficiency of enzyme replacement therapy in lysosomal storage disorders[J]. J Inherit Metab Dis, 2016, 39(4): 499-512. PMID: 26883220. DOI: 10.1007/s10545-016-9917-1.
6 Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery[J]. Nat Rev Drug Discov, 2019, 18(5): 358-378. PMID: 30710128. PMCID: PMC6927556. DOI: 10.1038/s41573-019-0012-9.
7 Salabarria SM, Nair J, Clement N, et al. Advancements in AAV-mediated gene therapy for Pompe disease[J]. J Neuromuscul Dis, 2020, 7(1): 15-31. PMID: 31796685. PMCID:PMC7029369. DOI: 10.3233/JND-190426.
8 Kohler L, Puertollano R, Raben N. Pompe disease: from basic science to therapy[J]. Neurotherapeutics, 2018, 15(4): 928-942. PMID: 30117059. PMCID: PMC6277280. DOI: 10.1007/s13311-018-0655-y.
9 Musumeci O, Marino S, Granata F, et al. Central nervous system involvement in late-onset Pompe disease: clues from neuroimaging and neuropsychological analysis[J]. Eur J Neurol, 2019, 26(3): 442-e35. PMID: 30312517. DOI: 10.1111/ene.13835.
10 Bay LB, Denzler I, Durand C, et al. Infantile-onset Pompe disease: diagnosis and management[J]. Arch Argent Pediatr, 2019, 117(4): 271-278. PMID: 31339275. DOI: 10.5546/aap.2019.eng.271.
11 Moriggi M, Capitanio D, Torretta E, et al. Muscle proteomic profile before and after enzyme replacement therapy in late-onset Pompe disease[J]. Int J Mol Sci, 2021, 22(6): 2850. PMID: 33799647. PMCID: PMC8001152. DOI: 10.3390/ijms22062850.
12 Dornelles AD, Junges APP, Pereira TV, et al. A systematic review and meta-analysis of enzyme replacement therapy in late-onset Pompe disease[J]. J Clin Med, 2021, 10(21): 4828. PMID: 34768348. PMCID: PMC8584814. DOI: 10.3390/jcm10214828.
13 Sun BD, Chen YT, Bird A, et al. Long-term correction of glycogen storage disease type II with a hybrid Ad-AAV vector[J]. Mol Ther, 2003, 7(2): 193-201. PMID: 12597907. DOI: 10.1016/S1525-0016(02)00055-2.
14 Ronzitti G, Collaud F, Laforet P, et al. Progress and challenges of gene therapy for Pompe disease[J]. Ann Transl Med, 2019, 7(13): 287. PMID: 31392199. PMCID: PMC6642941. DOI: 10.21037/atm.2019.04.67.
15 Lee NC, Hwu WL, Muramatsu SI, et al. A neuron-specific gene therapy relieves motor deficits in Pompe disease mice[J]. Mol Neurobiol, 2018, 55(6): 5299-5309. PMID: 28895054. DOI: 10.1007/s12035-017-0763-4.
16 Puzzo F, Colella P, Biferi MG, et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase[J]. Sci Transl Med, 2017, 9(418): eaam6375. PMID: 29187643. PMCID: PMC5826611. DOI: 10.1126/scitranslmed.aam6375.
17 Falk DJ, Soustek MS, Todd AG, et al. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice[J]. Mol Ther Methods Clin Dev, 2015, 2: 15007. PMID: 26029718. PMCID: PMC4445006. DOI: 10.1038/mtm.2015.7.
18 Smith BK, Collins SW, Conlon TJ, et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes[J]. Hum Gene Ther, 2013, 24(6): 630-640. PMID: 23570273. PMCID: PMC3689178. DOI: 10.1089/hum.2012.250.
19 宾夕法尼亚州大学信托人, 阿米库斯治疗学公司. 可用于治疗Pompe病的组合物: CN202080049015.0[P]. 2022-02-18.
20 Michaud M, Belmatoug N, Catros F, et al. Mucopolysaccharidosis: a review[J]. Rev Med Interne, 2020, 41(3): 180-188. PMID: 31959364. DOI: 10.1016/j.revmed.2019.11.010.
21 Bigger BW, Begley DJ, Virgintino D, et al. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders[J]. Mol Genet Metab, 2018, 125(4): 322-331. PMID: 30145178. DOI: 10.1016/j.ymgme.2018.08.003.
22 Giussani C, Guida L, Canonico F, et al. Cerebral and occipito-atlanto-axial involvement in mucopolysaccharidosis patients: clinical, radiological, and neurosurgical features[J]. Ital J Pediatr, 2018, 44(Suppl 2): 119. PMID: 30442179. PMCID: PMC6238297. DOI: 10.1186/s13052-018-0558-x.
23 D'Avanzo F, Rigon L, Zanetti A, et al. Mucopolysaccharidosis type Ⅱ: one hundred years of research, diagnosis, and treatment[J]. Int J Mol Sci, 2020, 21(4): 1258. PMID: 32070051. PMCID: PMC7072947. DOI: 10.3390/ijms21041258.
24 Desmaris N, Verot L, Puech JP, et al. Prevention of neuropathology in the mouse model of Hurler syndrome[J]. Ann Neurol, 2004, 56(1): 68-76. PMID: 15236403. DOI: 10.1002/ana.20150.
25 Hinderer C, Bell P, Louboutin JP, et al. Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model[J]. Mol Genet Metab, 2016, 119(1-2): 124-130. PMID: 27386755. PMCID: PMC5240037. DOI: 10.1016/j.ymgme.2016.06.006.
26 Ellinwood NM, Ausseil J, Desmaris N, et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes[J]. Mol Ther, 2011, 19(2): 251-259. PMID: 21139569. PMCID: PMC3034858. DOI: 10.1038/mt.2010.265.
27 Hinderer C, Katz N, Louboutin JP, et al. Delivery of an adeno-associated virus vector into cerebrospinal fluid attenuates central nervous system disease in mucopolysaccharidosis type II mice[J]. Hum Gene Ther, 2016, 27(11): 906-915. PMID: 27510804. DOI: 10.1089/hum.2016.101.
28 Winner LK, Beard H, Hassiotis S, et al. A preclinical study evaluating AAVrh10-based gene therapy for Sanfilippo syndrome[J]. Hum Gene Ther, 2016, 27(5): 363-375. PMID: 26975339. DOI: 10.1089/hum.2015.170.
29 Gutiérrez MA, García-Vallejo F, Tomatsu S, et al. Construction of an adenoassociated, viral derived, expression vector to correct the genetic defect in Morquio A disease[J]. Biomedica, 2008, 28(3): 448-459. PMID: 19034368.
30 哈尔滨医科大学. 一种腺相关病毒双重载体基因治疗系统及其在治疗黏多糖贮积症Ⅱ型中的应用: CN201911183591.X[P]. 2020-05-08.
31 Spitzer MS, Bartsch U. Neuronal ceroid lipofuscinoses[J]. Ophthalmologe, 2021, 118(2): 96-97. PMID: 33538885. DOI: 10.1007/s00347-020-01304-1.
32 Schulz A, Ajayi T, Specchio N, et al. Study of intraventricular cerliponase alfa for CLN2 disease[J]. N Engl J Med, 2018, 378(20): 1898-1907. PMID: 29688815. DOI: 10.1056/NEJMoa1712649.
33 Markham A. Cerliponase alfa: first global approval[J]. Drugs, 2017, 77(11): 1247-1249. PMID: 28589525. DOI: 10.1007/s40265-017-0771-8.
34 Cabrera-Salazar MA, Roskelley EM, Bu J, et al. Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease[J]. Mol Ther, 2007, 15(10): 1782-1788. PMID: 17637720. DOI: 10.1038/sj.mt.6300249.
35 Sondhi D, Hackett NR, Peterson DA, et al. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector[J]. Mol Ther, 2007, 15(3): 481-491. PMID: 17180118. DOI: 10.1038/sj.mt.6300049.
36 Sondhi D, Scott EC, Chen A, et al. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene[J]. Hum Gene Ther, 2014, 25(3): 223-239. PMID: 24372003. PMCID: PMC3955974. DOI: 10.1089/hum.2012.253.
37 Bosch ME, Aldrich A, Fallet R, et al. Self-complementary AAV9 gene delivery partially corrects pathology associated with juvenile neuronal ceroid lipofuscinosis (CLN3)[J]. J Neurosci, 2016, 36(37): 9669-9682. PMID: 27629717. PMCID: PMC6601943. DOI: 10.1523/JNEUROSCI.1635-16.2016.
38 Kleine Holthaus SM, Herranz-Martin S, Massaro G, et al. Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease[J]. Hum Mol Genet, 2019, 28(23): 3867-3879. PMID: 31807779. DOI: 10.1093/hmg/ddz210.
39 Mitchell NL, Russell KN, Wellby MP, et al. Longitudinal in vivo monitoring of the CNS demonstrates the efficacy of gene therapy in a sheep model of CLN5 Batten disease[J]. Mol Ther, 2018, 26(10): 2366-2378. PMID: 30078766. PMCID: PMC6171082. DOI: 10.1016/j.ymthe.2018.07.015.
40 Worgall S, Sondhi D, Hackett NR, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA[J]. Hum Gene Ther, 2008, 19(5): 463-474. PMID: 18473686. DOI: 10.1089/hum.2008.022.
41 全国儿童医院研究所. 腺相关病毒对CLN6多核苷酸的递送: CN202080012159.9[P]. 2021-10-29.
42 全国儿童医院研究所, 俄亥俄州创新基金会. 腺相关病毒对CLN3多核苷酸的递送: CN202080014802.1[P]. 2021-11-12.
43 星火治疗有限公司. 用于晚期婴儿神经元蜡样脂褐质沉积症2型的AAV载体治疗方法: CN202080024872.5[P]. 2022-01-04.

基金

湖南省重点研发计划项目(2022SK2036)。

PDF(619 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/