庞贝病神经系统损伤的研究进展

张文超, 毛莹莹,陈倩

中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (4) : 420-424.

PDF(515 KB)
HTML
PDF(515 KB)
HTML
中国当代儿科杂志 ›› 2023, Vol. 25 ›› Issue (4) : 420-424. DOI: 10.7499/j.issn.1008-8830.2211052
综述

庞贝病神经系统损伤的研究进展

  • 张文超, 毛莹莹,陈倩
作者信息 +

Research progress of nervous system damage in Pompe disease

  • ZHANG Wen-Chao, MAO Ying-Ying
Author information +
文章历史 +

摘要

庞贝病(Pompe disease)亦称糖原贮积病Ⅱ型,是常染色体隐性遗传的罕见病,随着酶替代疗法的应用,越来越多的庞贝病患者可存活至成年,以往未曾观察到的神经系统相关临床表现逐渐显现。神经系统受累严重影响庞贝病患者的生活质量,系统了解庞贝病神经系统损伤的病理变化、临床表现、影像学表现,对庞贝病的早期识别、早期干预有重要意义。该文就庞贝病神经系统损伤的研究进展进行综述。 [中国当代儿科杂志,2023,25(4):420-424]

Abstract

Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease. Citation:Chinese Journal of Contemporary Pediatrics, 2023, 25(4): 420-424

关键词

庞贝病 / 糖原贮积病Ⅱ型 / GAA基因 / 神经系统 / 临床表现

Key words

Pompe disease / Glycogen storage disease type Ⅱ / GAA gene / Nervous system / Clinical manifestation

引用本文

导出引用
张文超, 毛莹莹,陈倩. 庞贝病神经系统损伤的研究进展[J]. 中国当代儿科杂志. 2023, 25(4): 420-424 https://doi.org/10.7499/j.issn.1008-8830.2211052
ZHANG Wen-Chao, MAO Ying-Ying. Research progress of nervous system damage in Pompe disease[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(4): 420-424 https://doi.org/10.7499/j.issn.1008-8830.2211052

参考文献

1 Ebbink BJ, Poelman E, Aarsen FK, et al. Classic infantile Pompe patients approaching adulthood: a cohort study on consequences for the brain[J]. Dev Med Child Neurol, 2018, 60(6): 579-586. PMID: 29573408. DOI: 10.1111/dmcn.13740.
2 Spiridigliozzi GA, Keeling LA, Stefanescu M, et al. Cognitive and academic outcomes in long-term survivors of infantile-onset Pompe disease: a longitudinal follow-up[J]. Mol Genet Metab, 2017, 121(2): 127-137. PMID: 28495044. PMCID: PMC5985833. DOI: 10.1016/j.ymgme.2017.04.014.
3 van den Dorpel JJA, van der Vlugt WMC, Dremmen MHG, et al. Is the brain involved in patients with late-onset Pompe disease?[J]. J Inherit Metab Dis, 2022, 45(3): 493-501. PMID: 34927739. PMCID: PMC9306606. DOI: 10.1002/jimd.12469.
4 Ebbink BJ, Poelman E, Plug I, et al. Cognitive decline in classic infantile Pompe disease: an underacknowledged challenge[J]. Neurology, 2016, 86(13): 1260-1261. PMID: 26944269. DOI: 10.1212/WNL.0000000000002523.
5 Korlimarla A, Spiridigliozzi GA, Stefanescu M, et al. Behavioral, social and school functioning in children with Pompe disease[J]. Mol Genet Metab Rep, 2020, 25: 100635. PMID: 32793419. PMCID: PMC7414001. DOI: 10.1016/j.ymgmr.2020.100635.
6 Musumeci O, Marino S, Granata F, et al. Central nervous system involvement in late-onset Pompe disease: clues from neuroimaging and neuropsychological analysis[J]. Eur J Neurol, 2019, 26(3): 442-e35. PMID: 30312517. DOI: 10.1111/ene.13835.
7 Guevara-Campos J, González-Guevara L, Cauli O. Skeletal alterations, developmental delay and new mutations in juvenile-onset Pompe disease[J]. Neuromuscul Disord, 2019, 29(3): 192-197. PMID: 30595407. DOI: 10.1016/j.nmd.2018.11.013.
8 Lim JA, Yi H, Gao F, et al. Intravenous injection of an AAV-PHP.B vector encoding human acid α-glucosidase rescues both muscle and CNS defects in murine Pompe disease[J]. Mol Ther Methods Clin Dev, 2019, 12: 233-245. PMID: 30809555. PMCID: PMC6376130. DOI: 10.1016/j.omtm.2019.01.006.
9 Crisp KD, Neel AT, Amarasekara S, et al. Assessment of dysphonia in children with Pompe disease using auditory-perceptual and acoustic/physiologic methods[J]. J Clin Med, 2021, 10(16): 3617. PMID: 34441913. PMCID: PMC8396833. DOI: 10.3390/jcm10163617.
10 Su HT, Wang LM, Yang CF, et al. Language, speech, and oromotor function in children with Pompe disease[J]. Neuromuscul Disord, 2020, 30(5): 400-412. PMID: 32387282. DOI: 10.1016/j.nmd.2020.03.003.
11 Huggins E, Holland M, Case LE, et al. Early clinical phenotype of late onset Pompe disease: lessons learned from newborn screening[J]. Mol Genet Metab, 2022, 135(3): 179-185. PMID: 35123877. DOI: 10.1016/j.ymgme.2022.01.003.
12 Jones HN, Hobson-Webb LD, Kuchibhatla M, et al. Tongue weakness and atrophy differentiates late-onset Pompe disease from other forms of acquired/hereditary myopathy[J]. Mol Genet Metab, 2021, 133(3): 261-268. PMID: 34053870. DOI: 10.1016/j.ymgme.2021.05.005.
13 Galeotti A, De Rosa S, Uomo R, et al. Orofacial features and pediatric dentistry in the long-term management of infantile Pompe disease children[J]. Orphanet J Rare Dis, 2020, 15(1): 329. PMID: 33228748. PMCID: PMC7685588. DOI: 10.1186/s13023-020-01615-1.
14 Prater SN, Banugaria SG, DeArmey SM, et al. The emerging phenotype of long-term survivors with infantile Pompe disease[J]. Genet Med, 2012, 14(9): 800-810. PMID: 22538254. PMCID: PMC3947503. DOI: 10.1038/gim.2012.44.
15 Hsueh CY, Huang CY, Yang CF, et al. Hearing characteristics of infantile-onset Pompe disease after early enzyme-replacement therapy[J]. Orphanet J Rare Dis, 2021, 16(1): 348. PMID: 34353347. PMCID: PMC8340467. DOI: 10.1186/s13023-021-01817-1.
16 Hanisch F, Rahne T, Plontke SK. Prevalence of hearing loss in patients with late-onset Pompe disease: audiological and otological consequences[J]. Int J Audiol, 2013, 52(12): 816-823. PMID: 24160854. DOI: 10.3109/14992027.2013.840932.
17 Musumeci O, Catalano N, Barca E, et al. Auditory system involvement in late onset Pompe disease: a study of 20 Italian patients[J]. Mol Genet Metab, 2012, 107(3): 480-484. PMID: 22958975. DOI: 10.1016/j.ymgme.2012.07.024.
18 Yang CF, Yang CC, Liao HC, et al. Very early treatment for infantile-onset Pompe disease contributes to better outcomes[J]. J Pediatr, 2016, 169: 174-180.e1. PMID: 26685070. DOI: 10.1016/j.jpeds.2015.10.078.
19 Prakalapakorn SG, Proia AD, Yanovitch TL, et al. Ocular and histologic findings in a series of children with infantile Pompe disease treated with enzyme replacement therapy[J]. J Pediatr Ophthalmol Strabismus, 2014, 51(6): 355-362. PMID: 25139343. PMCID: PMC4413912. DOI: 10.3928/01913913-20140813-01.
20 Thomas AS, Grewal DS, Toth CA. Intermediate uveitis with retinal detachment in a patient with Pompe disease[J]. Retin Cases Brief Rep, 2022, 16(3): 293-295. PMID: 31996560. DOI: 10.1097/ICB.0000000000000971.
21 Turco EC, Facini C, Piccolo B, et al. Nystagmus in infantile Pompe disease: a new feature?[J]. Acta Biomed, 2020, 91(3): e2020083. PMID: 32921779. PMCID: PMC7716971. DOI: 10.23750/abm.v91i3.8366.
22 Enax-Krumova EK, Dahlhaus I, G?rlach J, et al. Small fiber involvement is independent from clinical pain in late-onset Pompe disease[J]. Orphanet J Rare Dis, 2022, 17(1): 177. PMID: 35477515. PMCID: PMC9044713. DOI: 10.1186/s13023-022-02327-4.
23 Hobson-Webb LD, Austin SL, Jain S, et al. Small-fiber neuropathy in Pompe disease: first reported cases and prospective screening of a clinic cohort[J]. Am J Case Rep, 2015, 16: 196-201. PMID: 25835646. PMCID: PMC4387956. DOI: 10.12659/AJCR.893309.
24 Lamartine S Monteiro M, Remiche G. Late-onset Pompe disease associated with polyneuropathy[J]. Neuromuscul Disord, 2019, 29(12): 968-972. PMID: 31676142. DOI: 10.1016/j.nmd.2019.08.016.
25 Lee NC, Hwu WL, Muramatsu SI, et al. A neuron-specific gene therapy relieves motor deficits in Pompe disease mice[J]. Mol Neurobiol, 2018, 55(6): 5299-5309. PMID: 28895054. DOI: 10.1007/s12035-017-0763-4.
26 Sch?nzer A, G?rlach J, Claudi K, et al. Severe distal muscle involvement and mild sensory neuropathy in a boy with infantile onset Pompe disease treated with enzyme replacement therapy for 6 years[J]. Neuromuscul Disord, 2019, 29(6): 477-482. PMID: 31101460. DOI: 10.1016/j.nmd.2019.03.004.
27 Tsai LK, Hwu WL, Lee NC, et al. Clinical features of Pompe disease with motor neuronopathy[J]. Neuromuscul Disord, 2019, 29(11): 903-906. PMID: 31706699. DOI: 10.1016/j.nmd.2019.09.011.
28 Fuller DD, Trejo-Lopez JA, Yachnis AT, et al. Case studies in neuroscience: neuropathology and diaphragm dysfunction in ventilatory failure from late-onset Pompe disease[J]. J Neurophysiol, 2021, 126(2): 351-360. PMID: 34191636. PMCID: PMC8409957. DOI: 10.1152/jn.00190.2021.
29 DeRuisseau LR, Fuller DD, Qiu K, et al. Neural deficits contribute to respiratory insufficiency in Pompe disease[J]. Proc Natl Acad Sci U S A, 2009, 106(23): 9419-9424. PMID: 19474295. PMCID: PMC2695054. DOI: 10.1073/pnas.0902534106.
30 Fusco AF, McCall AL, Dhindsa JS, et al. The respiratory phenotype of Pompe disease mouse models[J]. Int J Mol Sci, 2020, 21(6): 2256. PMID: 32214050. PMCID: PMC7139647. DOI: 10.3390/ijms21062256.
31 McIntosh PT, Hobson-Webb LD, Kazi ZB, et al. Neuroimaging findings in infantile Pompe patients treated with enzyme replacement therapy[J]. Mol Genet Metab, 2018, 123(2): 85-91. PMID: 29050825. PMCID: PMC5808895. DOI: 10.1016/j.ymgme.2017.10.005.
32 Chien YH, Lee NC, Peng SF, et al. Brain development in infantile-onset Pompe disease treated by enzyme replacement therapy[J]. Pediatr Res, 2006, 60(3): 349-352. PMID: 16857770. DOI: 10.1203/01.pdr.0000233014.84318.4e.
33 Paoletti M, Pichiecchio A, Colafati GS, et al. Multicentric retrospective evaluation of five classic infantile Pompe disease subjects under enzyme replacement therapy with early infratentorial involvement[J]. Front Neurol, 2020, 11: 569153. PMID: 33329311. PMCID: PMC7732650. DOI: 10.3389/fneur.2020.569153.
34 Broomfield A, Fletcher J, Hensman P, et al. Rapidly progressive white matter involvement in early childhood: the expanding phenotype of infantile onset Pompe?[J]. JIMD Rep, 2018, 39: 55-62. PMID: 28726123. PMCID: PMC5953890. DOI: 10.1007/8904_2017_46.
35 Schneider I, Hensel O, Zierz S. White matter lesions in treated late onset Pompe disease are not different to matched controls[J]. Mol Genet Metab, 2019, 127(2): 128-131. PMID: 31153821. DOI: 10.1016/j.ymgme.2019.05.007.
36 Pichiecchio A, Sacco S, De Filippi P, et al. Late-onset Pompe disease: a genetic-radiological correlation on cerebral vascular anomalies[J]. J Neurol, 2017, 264(10): 2110-2118. PMID: 28856460. DOI: 10.1007/s00415-017-8601-1.
37 Pena LD, Proia AD, Kishnani PS. Postmortem findings and clinical correlates in individuals with infantile-onset Pompe disease[J]. JIMD Rep, 2015, 23: 45-54. PMID: 25763511. PMCID: PMC4484900. DOI: 10.1007/8904_2015_426.
38 Byrne BJ, Fuller DD, Smith BK, et al. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy[J]. Ann Transl Med, 2019, 7(13): 290. PMID: 31392202. PMCID: PMC6642929. DOI: 10.21037/atm.2019.05.56.
39 Cheng YS, Yang S, Hong J, et al. Modeling CNS involvement in Pompe disease using neural stem cells generated from patient-derived induced pluripotent stem cells[J]. Cells, 2020, 10(1): 8. PMID: 33375166. PMCID: PMC7822217. DOI: 10.3390/cells10010008.
40 Falk DJ, Todd AG, Lee S, et al. Peripheral nerve and neuromuscular junction pathology in Pompe disease[J]. Hum Mol Genet, 2015, 24(3): 625-636. PMID: 25217571. PMCID: PMC4291243. DOI: 10.1093/hmg/ddu476.

PDF(515 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/