目的 对甘肃地区新生儿遗传代谢病(inherited metabolic disorder, IMD)的疾病谱和致病基因变异进行分析。 方法 回顾性分析2018年1月—2021年12月甘肃省妇幼保健院286 682例新生儿IMD筛查的串联质谱数据,对串联质谱初筛及复查阳性的患儿进行基因分析。 结果 286 682例新生儿中共发现28个致病基因导致的23种IMD,IMD总患病率为0.63‰(1/1 593),其中苯丙酮尿症患病率最高(0.32‰,1/3 083),其次为甲基丙二酸血症(0.11‰,1/8 959)及四氢生物蝶呤缺乏症(0.06‰,1/15 927)。在28个致病基因中共鉴定出166种变异,其中9个基因中存在13种新变异。根据美国医学遗传学与基因组学学会指南,5种新变异为致病变异,7种为可能致病变异,1种为临床意义未明。 结论 该研究丰富了IMD相关致病基因变异数据库,为该地区IMD精准筛查与诊断体系的建立提供基础性数据。
Abstract
Objective To investigate the disease spectrum and pathogenic genes of inherited metabolic disorder (IMD) among neonates in Gansu Province of China. Methods A retrospective analysis was conducted on the tandem mass spectrometry data of 286 682 neonates who received IMD screening in Gansu Provincial Maternal and Child Health Hospital from January 2018 to December 2021. A genetic analysis was conducted on the neonates with positive results in tandem mass spectrometry during primary screening and reexamination. Results A total of 23 types of IMD caused by 28 pathogenic genes were found in the 286 682 neonates, and the overall prevalence rate of IMD was 0.63‰ (1/1 593), among which phenylketonuria showed the highest prevalence rate of 0.32‰ (1/3 083), followed by methylmalonic acidemia (0.11‰, 1/8 959) and tetrahydrobiopterin deficiency (0.06‰, 1/15 927). In this study, 166 variants were identified in the 28 pathogenic genes, with 13 novel variants found in 9 genes. According to American College of Medical Genetics and Genomics guidelines, 5 novel variants were classified as pathogenic variants, 7 were classified as likely pathogenic variants, and 1 was classified as the variant of uncertain significance. Conclusions This study enriches the database of pathogenic gene variants for IMD and provides basic data for establishing an accurate screening and diagnosis system for IMD in this region.
关键词
遗传代谢病 /
基因变异 /
精准筛查与诊断 /
新生儿
Key words
Inherited metabolic disorder /
Genetic variation /
Accurate screening and diagnosis /
Neonate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 4版. 北京: 人民卫生出版社, 2011: 816-840.
2 Bari? I, Fumi? K, Hoffmann GF. Inborn errors of metabolism at the turn of the millennium[J]. Croat Med J, 2001, 42(4): 379-383. PMID: 11471189.
3 Ferreira CR, Rahman S, Keller M, et al. An international classification of inherited metabolic disorders (ICIMD)[J]. J Inherit Metab Dis, 2021, 44(1): 164-177. PMID: 33340416. PMCID: PMC9021760. DOI: 10.1002/jimd.12348.
4 El-Hattab AW, Almannai M, Sutton VR. Newborn screening: history, current status, and future directions[J]. Pediatr Clin North Am, 2018, 65(2): 389-405. PMID: 29502920. DOI: 10.1016/j.pcl.2017.11.013.
5 Almannai M, Marom R, Sutton VR. Newborn screening: a review of history, recent advancements, and future perspectives in the era of next generation sequencing[J]. Curr Opin Pediatr, 2016, 28(6): 694-699. PMID: 27552071. DOI: 10.1097/MOP.0000000000000414.
6 Grosse SD. Does newborn screening save money? The difference between cost-effective and cost-saving interventions[J]. J Pediatr, 2005, 146(2): 168-170. PMID: 15689900. DOI: 10.1016/j.jpeds.2004.10.015.
7 Hillert A, Anikster Y, Belanger-Quintana A, et al. The genetic landscape and epidemiology of phenylketonuria[J]. Am J Hum Genet, 2020, 107(2): 234-250. PMID: 32668217. PMCID: PMC7413859. DOI: 10.1016/j.ajhg.2020.06.006.
8 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. PMID: 25741868. PMCID: PMC4544753. DOI: 10.1038/gim.2015.30.
9 卫生部临床检验中心新生儿遗传代谢疾病筛查室间质量评价委员会. 新生儿疾病串联质谱筛查技术专家共识[J]. 中华检验医学杂志, 2019, 42(2): 89-97. DOI: 10.3760/cma.j.issn.1009-9158.2019.02.004.
10 Berry SA. Newborn screening[J]. Clin Perinatol, 2015, 42(2): 441-453, x. PMID: 26042913. DOI: 10.1016/j.clp.2015.03.002.
11 American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: toward a uniform screening panel and system—executive summary[J]. Pediatrics, 2006, 117(5 Pt 2): S296-S307. PMID: 16735256. DOI: 10.1542/peds.2005-2633I.
12 Pena LD, van Calcar SC, Hansen J, et al. Outcomes and genotype-phenotype correlations in 52 individuals with VLCAD deficiency diagnosed by NBS and enrolled in the IBEM-IS database[J]. Mol Genet Metab, 2016, 118(4): 272-281. PMID: 27209629. PMCID: PMC4970910. DOI: 10.1016/j.ymgme.2016.05.007.
13 Posset R, Garcia-Cazorla A, Valayannopoulos V, et al. Age at disease onset and peak ammonium level rather than interventional variables predict the neurological outcome in urea cycle disorders[J]. J Inherit Metab Dis, 2016, 39(5): 661-672. PMID: 27106216. DOI: 10.1007/s10545-016-9938-9.
14 马胜举, 赵德华, 马坤, 等. 河南省2013-2019年新生儿遗传代谢病筛查回顾性分析[J]. 检验医学与临床, 2020, 17(14): 1965-1968. DOI: 10.3969/j.issn.1672-9455.2020.14.006.
15 杨茹莱, 沈亚平, 陈迟, 等. 2009-2021年浙江省新生儿遗传代谢病基因型分析[J]. 预防医学, 2022, 34(8): 760-764. DOI: 10.19485/j.cnki.issn2096-5087.2022.08.002.
16 唐诚芳, 谭敏沂, 谢婷, 等. 广州地区新生儿遗传代谢病串联质谱法筛查结果及筛查性能评估[J]. 浙江大学学报(医学版), 2021, 50(4): 463-471. PMID: 34704419. PMCID: PMC8714483. DOI: 10.3724/zdxbyxb-2021-0260.
17 张瑞雪, 宋成荣, 张言, 等. 串联质谱联合二代测序技术在陕西地区遗传代谢病诊断中的应用[J]. 国际遗传学杂志, 2020, 43(6): 317-323. DOI: 10.3760/cma.j.cn231536-20200622-00051.
18 Carleton SM, Peck DS, Grasela J, et al. DNA carrier testing and newborn screening for maple syrup urine disease in Old Order Mennonite communities[J]. Genet Test Mol Biomarkers, 2010, 14(2): 205-208. PMID: 20136525. PMCID: PMC5586154. DOI: 10.1089/gtmb.2009.0107.
19 Bell CJ, Dinwiddie DL, Miller NA, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing[J]. Sci Transl Med, 2011, 3(65): 65ra4. PMID: 21228398. PMCID: PMC3740116. DOI: 10.1126/scitranslmed.3001756.
基金
甘肃省科技计划资助项目(22YF7FA094);兰州市科技计划项目(2021-1-182);甘肃省卫生行业计划项目(GSWSKY2022-33);甘肃省科技厅创新基地及人才计划(21JR7RA680);甘肃省自然科学基金(23JRRA1378);国家科技资源共享服务平台(2005DKA21300)。