先天性心脏病相关性神经发育障碍的研究进展

刘玉梅, 刘天钰, 农绍汉, 周晓光

中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (11) : 1231-1237.

PDF(515 KB)
HTML
PDF(515 KB)
HTML
中国当代儿科杂志 ›› 2024, Vol. 26 ›› Issue (11) : 1231-1237. DOI: 10.7499/j.issn.1008-8830.2406063
综述

先天性心脏病相关性神经发育障碍的研究进展

  • 刘玉梅1, 刘天钰2, 农绍汉1, 周晓光2
作者信息 +

Research progress on neurodevelopmental disorders associated with congenital heart disease

  • LIU Yu-Mei, LIU Tian-Yu, NONG Shao-Han, ZHOU Xiao-Guang
Author information +
文章历史 +

摘要

儿童神经发育障碍发生率与致残率均较高,已成为影响全球儿童健康的重大公共卫生问题。先天性心脏病患儿神经发育障碍(congenital heart disease associated neurodevelopmental disorder, CHDNDD)尤为常见,不同先天性心脏病类型、手术方式、年龄阶段,以及发生不同并发症或合并症时其临床特点各有不同。近年来,基于“早期诊断、早期治疗”的干预模式,国外开始探讨高危儿神经发育障碍的预防性早期干预新技术,并取得较好效果。该文就CHDNDD临床特点进行综述,以期为先天性心脏病患儿正确进行预防性早期干预新技术提供理论依据,从而进一步降低CHDNDD发生率。

Abstract

The incidence and disability rate of neurodevelopmental disorders in children are high, making it a significant public health issue affecting children's health globally. Neurodevelopmental disorders are particularly common in children with congenital heart disease (CHD), with clinical characteristics varying by type of CHD, surgical approach, age stage, and the presence of different complications or comorbidities. In recent years, based on the intervention model of "early diagnosis and early treatment," foreign studies have begun to explore new techniques for preventive early intervention in high-risk children with neurodevelopmental disorders, achieving promising results. This paper reviews the clinical characteristics of neurodevelopmental disorders associated with CHD, aiming to provide a theoretical basis for implementing new preventive early intervention techniques for children with CHD, thereby further reducing the incidence of neurodevelopmental disorders associated with CHD.

关键词

神经发育障碍 / 先天性心脏病 / 随访 / 预防性干预 / 儿童

Key words

Neurodevelopmental disorder / Congenital heart disease / Follow-up / Preventive intervention / Child

引用本文

导出引用
刘玉梅, 刘天钰, 农绍汉, 周晓光. 先天性心脏病相关性神经发育障碍的研究进展[J]. 中国当代儿科杂志. 2024, 26(11): 1231-1237 https://doi.org/10.7499/j.issn.1008-8830.2406063
LIU Yu-Mei, LIU Tian-Yu, NONG Shao-Han, ZHOU Xiao-Guang. Research progress on neurodevelopmental disorders associated with congenital heart disease[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(11): 1231-1237 https://doi.org/10.7499/j.issn.1008-8830.2406063

参考文献

1 Sood E, Newburger JW, Anixt JS, et al. Neurodevelopmental outcomes for individuals with congenital heart disease: updates in neuroprotection, risk-stratification, evaluation, and management: a scientific statement from the American Heart Association[J]. Circulation, 2024, 149(13): e997-e1022. PMID: 38385268. DOI: 10.1161/CIR.0000000000001211.
2 Loblein HJ, Vukmirovich PW, Donofrio MT, et al. Prevalence of neurodevelopmental disorders in a clinically referred sample of children with CHD[J]. Cardiol Young, 2023, 33(4): 619-626. PMID: 36094009. DOI: 10.1017/S1047951122001469.
3 Liamlahi R, Latal B. Neurodevelopmental outcome of children with congenital heart disease[J]. Handb Clin Neurol, 2019, 162: 329-345. PMID: 31324319. DOI: 10.1016/B978-0-444-64029-1.00016-3.
4 GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Neurol, 2024, 23(4): 344-381. PMID: 38493795. PMCID: PMC10949203. DOI: 10.1016/S1474-4422(24)00038-3.
5 McIntyre S, Goldsmith S, Webb A, et al. Global prevalence of cerebral palsy: a systematic analysis[J]. Dev Med Child Neurol, 2022, 64(12): 1494-1506. PMID: 35952356. PMCID: PMC9804547. DOI: 10.1111/dmcn.15346.
6 Calderon J, Newburger JW, Rollins CK. Neurodevelopmental and mental health outcomes in patients with Fontan circulation: a state-of-the-art review[J]. Front Pediatr, 2022, 10: 826349. PMID: 35356444. PMCID: PMC8959547. DOI: 10.3389/fped.2022.826349.
7 农绍汉, 余卫红, 李翠红, 等. 高危儿神经发育障碍预防性早期干预研究进展[J]. 中国当代儿科杂志, 2024, 26(3): 297-301. PMID: 38557383. PMCID: PMC10986381. DOI: 10.7499/j.issn.1008-8830.2310107.
8 Giang KW, Mandalenakis Z, Fedchenko M, et al. Congenital heart disease: changes in recorded birth prevalence and cardiac interventions over the past half-century in Sweden[J]. Eur J Prev Cardiol, 2023, 30(2): 169-176. PMID: 36198066. DOI: 10.1093/eurjpc/zwac227.
9 Serrano F, Guffey D, Shekerdemian L, et al. Early identification of autism spectrum disorder in children with CHD attending a cardiac developmental outcomes program[J]. Cardiol Young, 2024, 34(3): 483-488. PMID: 37466015. DOI: 10.1017/S1047951123001701.
10 Gonzalez VJ, Kimbro RT, Cutitta KE, et al. Mental health disorders in children with congenital heart disease[J]. Pediatrics, 2021, 147(2): e20201693. PMID: 33397689. PMCID: PMC7849200. DOI: 10.1542/peds.2020-1693.
11 Garne E, Goldsmith S, Barisic I, et al. Severe congenital heart defects and cerebral palsy[J]. J Pediatr, 2023, 262: 113617. PMID: 37473991. DOI: 10.1016/j.jpeds.2023.113617.
12 Sadhwani A, Wypij D, Rofeberg V, et al. Fetal brain volume predicts neurodevelopment in congenital heart disease[J]. Circulation, 2022, 145(15): 1108-1119. PMID: 35143287. PMCID: PMC9007882. DOI: 10.1161/CIRCULATIONAHA.121.056305.
13 Peyvandi S, Rollins C. Fetal brain development in congenital heart disease[J]. Can J Cardiol, 2023, 39(2): 115-122. PMID: 36174913. PMCID: PMC9905309. DOI: 10.1016/j.cjca.2022.09.020.
14 Meuwly E, Feldmann M, Knirsch W, et al. Postoperative brain volumes are associated with one-year neurodevelopmental outcome in children with severe congenital heart disease[J]. Sci Rep, 2019, 9(1): 10885. PMID: 31350426. PMCID: PMC6659678. DOI: 10.1038/s41598-019-47328-9.
15 Ren JY, Zhu M, Dong SZ. Three-dimensional volumetric magnetic resonance imaging detects early alterations of the brain growth in fetuses with congenital heart disease[J]. J Magn Reson Imaging, 2021, 54(1): 263-272. PMID: 33559371. DOI: 10.1002/jmri.27526.
16 Dovjak GO, Hausmaninger G, Zalewski T, et al. Brainstem and cerebellar volumes at magnetic resonance imaging are smaller in fetuses with congenital heart disease[J]. Am J Obstet Gynecol, 2022, 227(2): 282.e1-282.e15. PMID: 35305961. DOI: 10.1016/j.ajog.2022.03.030.
17 Claessens NHP, Khalili N, Isgum I, et al. Brain and CSF volumes in fetuses and neonates with antenatal diagnosis of critical congenital heart disease: a longitudinal MRI study[J]. AJNR Am J Neuroradiol, 2019, 40(5): 885-891. PMID: 30923087. PMCID: PMC7053893. DOI: 10.3174/ajnr.A6021.
18 Paladini D, Finarelli A, Donarini G, et al. Frontal lobe growth is impaired in fetuses with congenital heart disease[J]. Ultrasound Obstet Gynecol, 2021, 57(5): 776-782. PMID: 32573836. DOI: 10.1002/uog.22127.
19 Bonthrone AF, Kelly CJ, Ng IHX, et al. MRI studies of brain size and growth in individuals with congenital heart disease[J]. Transl Pediatr, 2021, 10(8): 2171-2181. PMID: 34584889. PMCID: PMC8429874. DOI: 10.21037/tp-20-282.
20 Reich B, Schwan S, Heye K, et al. Long-term neurodevelopmental outcome and serial cerebral magnetic resonance imaging assessment in Fontan patients at school age[J]. Eur J Cardiothorac Surg, 2023, 64(2): ezad267. PMID: 37527014. DOI: 10.1093/ejcts/ezad267.
21 Aleksonis HA, King TZ. Relationships among structural neuroimaging and neurocognitive outcomes in adolescents and young adults with congenital heart disease: a systematic review[J]. Neuropsychol Rev, 2023, 33(2): 432-458. PMID: 35776371. DOI: 10.1007/s11065-022-09547-2.
22 Morton SU, Maleyeff L, Wypij D, et al. Abnormal right-hemispheric sulcal patterns correlate with executive function in adolescents with tetralogy of Fallot[J]. Cereb Cortex, 2021, 31(10): 4670-4680. PMID: 34009260. PMCID: PMC8408447. DOI: 10.1093/cercor/bhab114.
23 Rollins CK, Asaro LA, Akhondi-Asl A, et al. White matter volume predicts language development in congenital heart disease[J]. J Pediatr, 2017, 181: 42-48.e2. PMID: 27837950. PMCID: PMC5274582. DOI: 10.1016/j.jpeds.2016.09.070.
24 Barkhuizen M, Abella R, Vles JSH, et al. Antenatal and perioperative mechanisms of global neurological injury in congenital heart disease[J]. Pediatr Cardiol, 2021, 42(1): 1-18. PMID: 33373013. PMCID: PMC7864813. DOI: 10.1007/s00246-020-02440-w.
25 Asschenfeldt B, Evald L, Yun HJ, et al. Abnormal left-hemispheric sulcal patterns in adults with simple congenital heart defects repaired in childhood[J]. J Am Heart Assoc, 2021, 10(7): e018580. PMID: 33745293. PMCID: PMC8174332. DOI: 10.1161/JAHA.120.018580.
26 Asschenfeldt B, Evald L, Salvig C, et al. Altered cerebral microstructure in adults with atrial septal defect and ventricular septal defect repaired in childhood[J]. J Am Heart Assoc, 2022, 11(12): e020915. PMID: 35699183. PMCID: PMC9238637. DOI: 10.1161/JAHA.121.020915.
27 Heye KN, Knirsch W, Latal B, et al. Reduction of brain volumes after neonatal cardiopulmonary bypass surgery in single-ventricle congenital heart disease before Fontan completion[J]. Pediatr Res, 2018, 83(1-1): 63-70. PMID: 29278641. DOI: 10.1038/pr.2017.203.
28 Knirsch W, Heye KN, Tuura RO, et al. Smaller brain volumes at two years of age in patients with hypoplastic left heart syndrome: impact of surgical approach[J]. Int J Cardiol, 2019, 291: 42-44. PMID: 30952528. DOI: 10.1016/j.ijcard.2019.03.055.
29 Verrall CE, Yang JYM, Chen J, et al. Neurocognitive dysfunction and smaller brain volumes in adolescents and adults with a Fontan circulation[J]. Circulation, 2021, 143(9): 878-891. PMID: 33231097. DOI: 10.1161/CIRCULATIONAHA.120.048202.
30 Leon RL, Mir IN, Herrera CL, et al. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes[J]. Pediatr Res, 2022, 91(4): 787-794. PMID: 33864014. PMCID: PMC9064799. DOI: 10.1038/s41390-021-01521-7.
31 Nijman M, van der Meeren LE, Nikkels PGJ, et al. Placental pathology contributes to impaired volumetric brain development in neonates with congenital heart disease[J]. J Am Heart Assoc, 2024, 13(5): e033189. PMID: 38420785. PMCID: PMC10944035. DOI: 10.1161/JAHA.123.033189.
32 Gill K, Sasaki J, Jayakar P, et al. Chromosomal microarray detects genetic risks of neurodevelopmental disorders in newborns with congenital heart disease[J]. Cardiol Young, 2021, 31(8): 1275-1282. PMID: 33536103. DOI: 10.1017/S1047951121000202.
33 Derridj N, Calderon J, Bonnet D, et al. Neurodevelopmental outcomes of preterm and growth-restricted neonate with congenital heart defect: a systematic review and meta-analysis[J]. Eur J Pediatr, 2024, 183(5): 1967-1987. PMID: 38353800. DOI: 10.1007/s00431-023-05419-w.
34 Mercer-Rosa L, Favilla E. Neurodevelopment in patients with repaired tetralogy of Fallot[J]. Front Pediatr, 2024, 12: 1137131. PMID: 38737635. PMCID: PMC11082288. DOI: 10.3389/fped.2024.1137131.
35 Miles KG, Farkas DK, Laugesen K, et al. Mental health conditions among children and adolescents with congenital heart disease: a Danish population-based cohort study[J]. Circulation, 2023, 148(18): 1381-1394. PMID: 37721036. PMCID: PMC10615360. DOI: 10.1161/CIRCULATIONAHA.123.064705.
36 Tripathi T, Harrison TM, Simsic JM, et al. Screening and evaluation of neurodevelopmental impairments in infants under 6 months of age with congenital heart disease[J]. Pediatr Cardiol, 2022, 43(3): 489-496. PMID: 35190880. DOI: 10.1007/s00246-021-02745-4.
37 Vagha K, Taksande A, Kenjale S, et al. Neurodevelopmental assessment in children with congenital heart disease by applying the Denver developmental screening test 2: a prospective cross-sectional study[J]. Cureus, 2023, 15(1): e33373. PMID: 36751205. PMCID: PMC9897704. DOI: 10.7759/cureus.33373.
38 Asschenfeldt B, Evald L, Heiberg J, et al. Neuropsychological status and structural brain imaging in adults with simple congenital heart defects closed in childhood[J]. J Am Heart Assoc, 2020, 9(11): e015843. PMID: 32427039. PMCID: PMC7428999. DOI: 10.1161/JAHA.120.015843.
39 Knirsch W, Mayer KN, Scheer I, et al. Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure[J]. Eur J Cardiothorac Surg, 2017, 51(4): 740-746. PMID: 28013288. DOI: 10.1093/ejcts/ezw399.
40 Kordopati-Zilou K, Sergentanis T, Pervanidou P, et al. Dextro-transposition of great arteries and neurodevelopmental outcomes: a review of the literature[J]. Children (Basel), 2022, 9(4): 502. PMID: 35455546. PMCID: PMC9027469. DOI: 10.3390/children9040502.
41 Stegeman R, Sprong MCA, Breur JMPJ, et al. Early motor outcomes in infants with critical congenital heart disease are related to neonatal brain development and brain injury[J]. Dev Med Child Neurol, 2022, 64(2): 192-199. PMID: 34416027. PMCID: PMC9290970. DOI: 10.1111/dmcn.15024.
42 Hsu WF, Chien WC, Chung CH, et al. Association between tetralogy of Fallot and psychiatric disorders: a nationwide cohort study[J]. J Clin Psychiatry, 2021, 82(2): 19m13126. PMID: 33988933. DOI: 10.4088/JCP.19m13126.
43 Feldmann M, Bataillard C, Ehrler M, et al. Cognitive and executive function in congenital heart disease: a meta-analysis[J]. Pediatrics, 2021, 148(4): e2021050875. PMID: 34561266. DOI: 10.1542/peds.2021-050875.
44 Kordopati-Zilou K, Sergentanis T, Pervanidou P, et al. Neurodevelopmental outcomes in tetralogy of Fallot: a systematic review[J]. Children (Basel), 2022, 9(2): 264. PMID: 35204984. PMCID: PMC8870281. DOI: 10.3390/children9020264.
45 Ramanan S, Sundaram S, Gopalakrishnan A, et al. Intermediate-term neurodevelopmental outcomes and quality of life after arterial switch operation beyond early neonatal period[J]. Eur J Cardiothorac Surg, 2021, 60(6): 1428-1436. PMID: 34151942. DOI: 10.1093/ejcts/ezab223.
46 Knirsch W, De Silvestro A, von Rhein M. Neurodevelopmental and functional outcome in hypoplastic left heart syndrome after Hybrid procedure as stage I[J]. Front Pediatr, 2023, 10: 1099283. PMID: 36727010. PMCID: PMC9884824. DOI: 10.3389/fped.2022.1099283.
47 Bucholz EM, Sleeper LA, Goldberg CS, et al. Socioeconomic status and long-term outcomes in single ventricle heart disease[J]. Pediatrics, 2020, 146(4): e20201240. PMID: 32973120. PMCID: PMC7546087. DOI: 10.1542/peds.2020-1240.
48 Verrall CE, Chen J, Yeh CH, et al. A diffusion MRI study of brain white matter microstructure in adolescents and adults with a Fontan circulation: investigating associations with resting and peak exercise oxygen saturations and cognition[J]. Neuroimage Clin, 2022, 36: 103151. PMID: 35994923. PMCID: PMC9402393. DOI: 10.1016/j.nicl.2022.103151.
49 Laraja K, Sadhwani A, Tworetzky W, et al. Neurodevelopmental outcome in children after fetal cardiac intervention for aortic stenosis with evolving hypoplastic left heart syndrome[J]. J Pediatr, 2017, 184: 130-136.e4. PMID: 28233547. PMCID: PMC6343658. DOI: 10.1016/j.jpeds.2017.01.034.
50 Derridj N, Guedj R, Calderon J, et al. Long-term neurodevelopmental outcomes of children with congenital heart defects[J]. J Pediatr, 2021, 237: 109-114.e5. PMID: 34157347. DOI: 10.1016/j.jpeds.2021.06.032.
51 Basgoze S, Temur B, Ozcan ZS, et al. The effect of extracorporeal membrane oxygenation on neurodevelopmental outcomes in children after repair of congenital heart disease: a pilot study from Turkey[J]. Front Pediatr, 2023, 11: 1131361. PMID: 37077331. PMCID: PMC10106672. DOI: 10.3389/fped.2023.1131361.
52 Yoshida T, Hiraiwa A, Ibuki K, et al. Neurodevelopmental outcomes at 3 years for infants with congenital heart disease and very-low birthweight[J]. Pediatr Int, 2020, 62(7): 797-803. PMID: 31957091. DOI: 10.1111/ped.14160.
53 Hossin MZ, de la Cruz LF, McKay KA, et al. Association of pre-existing maternal cardiovascular diseases with neurodevelopmental disorders in offspring: a cohort study in Sweden and British Columbia, Canada[J]. Int J Epidemiol, 2024, 53(1): dyad184. PMID: 38150596. PMCID: PMC10859157. DOI: 10.1093/ije/dyad184.
54 Omann C, Nyboe C, Kristensen R, et al. Pre-eclampsia is associated with increased neurodevelopmental disorders in children with congenital heart disease[J]. Eur Heart J Open, 2022, 2(3): oeac027. PMID: 35919351. PMCID: PMC9242033. DOI: 10.1093/ehjopen/oeac027.

基金

广东省自然科学基金面上项目(2024A1515010180);广东省医学科研基金项目(A2024714)。

PDF(515 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/