目的 建立利奈唑胺在新生儿中的药动学模型并优化给药方案。 方法 前瞻性收集64例使用利奈唑胺抗感染治疗的败血症新生儿为研究对象,采用液相色谱串联质谱法检测血药浓度,收集临床资料,采用非线性混合效应建模法建立群体药动学(population pharmacokinetic, PPK)模型,采用蒙特卡洛模拟和评价不同特征患儿的最佳给药方案。 结果 利奈唑胺在新生儿体内的药动学特性可用一个具有一级消除的单室模型来描述,表观分布容积和清除率的群体典型值分别为0.79 L和0.34 L/h。拟合优度、可视化验证及自举法结果表明,模型稳健,参数估算及预测结果可靠。蒙特卡洛模拟显示新生儿利奈唑胺最佳给药方案,胎龄(gestational age, GA)28周6 mg/kg,q8h;GA 32周8 mg/kg,q8h;GA 34~37周9 mg/kg,q8h;GA 40周11 mg/kg,q8h。 结论 该研究建立的PPK模型可为新生儿利奈唑胺的个体化给药提供参考,GA和用药时体重是影响新生儿利奈唑胺清除率的显著性因素。
Abstract
Objective To establish the pharmacokinetic model of linezolid in neonates, and to optimize the administration regimen. Methods A prospective study was conducted among 64 neonates with sepsis who received linezolid as anti-infective therapy, and liquid chromatography-tandem mass spectrometry was used to measure the plasma concentration of the drug. Clinical data were collected, and nonlinear mixed effects modeling was used to establish a population pharmacokinetic (PPK) model. Monte Carlo simulation and evaluation was performed for the optimal administration regimen of children with different features. Results The pharmacokinetic properties of linezolid in neonates could be described by a single-compartment model with primary elimination, and the population typical values for apparent volume of distribution and clearance rate were 0.79 L and 0.34 L/h, respectively. The results of goodness of fit, visualization verification, and the Bootstrap method showed that the model was robust with reliable results of parameter estimation and prediction. Monte Carlo simulation results showed that the optimal administration regimen for linezolid in neonates was as follows: 6 mg/kg, q8h, at 28 weeks of gestational age (GA); 8 mg/kg, q8h, at 32 weeks of GA; 9 mg/kg, q8h, at 34-37 weeks of GA; 11 mg/kg, q8h, at 40 weeks of GA. Conclusions The PPK model established in this study can provide a reference for individual administration of linezolid in neonates. GA and body weight at the time of administration are significant influencing factors for the clearance rate of linezolid in neonates.
关键词
败血症 /
利奈唑胺 /
群体药动学 /
治疗药物监测 /
蒙特卡洛模拟 /
新生儿
Key words
Sepsis /
Linezolid /
Population pharmacokinetics /
Therapeutic drug monitoring /
Monte Carlo simulation /
Neonate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet, 2017, 390(10104): 1770-1780. PMID: 28434651. DOI: 10.1016/S0140-6736(17)31002-4.
2 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257. PMID: 30934196. DOI: 10.3760/cma.j.issn.0578-1310.2019.04.005.
3 Nelson JD, Bradley JS, Kimberlin DW, et al. 2021 Nelsons Pediatric Antimicrobial Therapy[M]. 27th ed. Itasca: American Academy of Pediatrics, 2021.
4 Liu P, Capitano B, Stein A, et al. Clinical outcomes of linezolid and vancomycin in patients with nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus stratified by baseline renal function: a retrospective, cohort analysis[J]. BMC Nephrol, 2017, 18(1): 168. PMID: 28532398. PMCID: PMC5440938. DOI: 10.1186/s12882-017-0581-y.
5 Kocher S, Müller W, Resch B. Linezolid treatment of nosocomial bacterial infection with multiresistant Gram-positive pathogens in preterm infants: a systematic review[J]. Int J Antimicrob Agents, 2010, 36(2): 106-110. PMID: 20605418. DOI: 10.1016/j.ijantimicag.2010.03.030.
6 Lin B, Hu Y, Xu P, et al. Expert consensus statement on therapeutic drug monitoring and individualization of linezolid[J]. Front Public Health, 2022, 10: 967311. PMID: 36033811. PMCID: PMC9399604. DOI: 10.3389/fpubh.2022.967311.
7 《中华儿科杂志》编辑委员会, 中华医学会儿科学分会儿童保健学组, 中华医学会儿科学分会新生儿学组. 早产、低出生体重儿出院后喂养建议[J]. 中华儿科杂志, 2016, 54(1): 6-12. PMID: 27470474. DOI: 10.3760/cma.j.issn.0578-1310.2016.01.003.
8 邵肖梅, 叶鸿瑁, 丘小汕. 实用新生儿学[M]. 5版. 北京: 人民卫生出版社, 2019.
9 市场监管总局. 药品不良反应报告和监测管理办法[EB/OL]. (2011-05-04)[2024-08-06]. https://www.gov.cn/zhengce/2021-06/29/content_5723552.htm.
10 Cojutti PG, Merelli M, Bassetti M, et al. Proactive therapeutic drug monitoring (TDM) may be helpful in managing long-term treatment with linezolid safely: findings from a monocentric, prospective, open-label, interventional study[J]. J Antimicrob Chemother, 2019, 74(12): 3588-3595. PMID: 31504570. DOI: 10.1093/jac/dkz374.
11 Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents[J]. Pediatr Clin North Am, 1987, 34(3): 571-590. PMID: 3588043. DOI: 10.1016/s0031-3955(16)36251-4.
12 Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling[J]. Clin Pharmacokinet, 2008, 47(4): 231-243. PMID: 18336053. DOI: 10.2165/00003088-200847040-00002.
13 Sicard M, Launay E, Caillon J, et al. Pharmacokinetics of linezolid treatment using intravenous and oral administrations in extremely premature infants[J]. Eur J Clin Pharmacol, 2015, 71(5): 611-615. PMID: 25740677. DOI: 10.1007/s00228-015-1813-3.
14 Thibault C, Kassir N, Goyer I, et al. Population pharmacokinetics of intravenous linezolid in premature infants[J]. Pediatr Infect Dis J, 2019, 38(1): 82-88. PMID: 29634620. DOI: 10.1097/INF.0000000000002067.
15 Bandín-Vilar E, García-Quintanilla L, Castro-Balado A, et al. A review of population pharmacokinetic analyses of linezolid[J]. Clin Pharmacokinet, 2022, 61(6): 789-817. PMID: 35699914. PMCID: PMC9192929. DOI: 10.1007/s40262-022-01125-2.
16 段露芬, 杨祖铭, 蔡燕, 等. 新生儿与老年重症肺炎患者利奈唑胺血药浓度监测与临床评价[J]. 中华临床感染病杂志, 2020, 13(6): 428-433. DOI: 10.3760/cma.j.issn.1674-2397.2020.06.006.
基金
江苏省医学会科研专项资金[SYH-32034-0080(20230027)];南京医科大学姑苏学院科研项目(GSKY20230201)。