FGF19通过激活Nrf2/HO-1信号通路减轻血管内皮细胞炎症损伤的机制研究

张艳君, 孝飞飞, 李晓花, 唐慎华, 桑义, 刘超越, 李建厂

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (5) : 601-608.

PDF(836 KB)
HTML
PDF(836 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (5) : 601-608. DOI: 10.7499/j.issn.1008-8830.2411076
论著·实验研究

FGF19通过激活Nrf2/HO-1信号通路减轻血管内皮细胞炎症损伤的机制研究

作者信息 +

FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway

Author information +
文章历史 +

摘要

目的 探讨成纤维细胞生长因子(fibroblast growth factor, FGF)19在高糖(high glucose, HG)导致的血管内皮细胞炎症损伤中的作用及其机制。 方法 将人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVEC)随机分为对照组、HG组、FGF19组、HG+FGF19组(n=3)。运用CCK8法检测不同浓度葡萄糖和/或FGF19对HUVEC细胞活力的影响,流式细胞术检测FGF19对HUVEC细胞凋亡的影响,ELISA法测定白细胞介素-6(interleukin 6, IL-6)、诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)、总超氧化物歧化酶(total superoxide dismutase, T-SOD)、丙二醛(malondialdehyde, MDA)水平,实时荧光定量PCR及Western blot法检测血管内皮生长因子(vascular endothelial growth factor, VEGF)、红系衍生的核因子2相关因子2(nuclear factor erythroid 2 related factor 2, Nrf2)、血红素加氧酶-1(heme oxygenase-1, HO-1)mRNA及蛋白表达水平;另取细胞分为对照组、siRNA-Nrf2(siNrf2)组、HG组、HG+FGF19组、HG+FGF19+阴性对照组、HG+FGF19+siNrf2组(n=3),观察沉默Nrf2基因后FGF19对HG诱导的HUVEC氧化应激损伤的影响。 结果 与对照组比较,HG组细胞凋亡率和IL-6、iNOS、MDA含量以及VEGF mRNA及蛋白表达升高(P<0.05),T-SOD活力以及Nrf2、HO-1 mRNA及蛋白表达降低(P<0.05);与HG组比较,HG+FGF19组细胞凋亡率和IL-6、iNOS、MDA含量以及VEGF mRNA及蛋白表达降低(P<0.05),T-SOD活力以及Nrf2、HO-1 mRNA及蛋白表达水平升高(P<0.05)。与HG+FGF19+阴性对照组相比,HG+FGF19+siNrf2组T-SOD活力下降,MDA含量升高(P<0.05)。 结论 FGF19可减轻HG导致的血管内皮细胞炎症损伤,其机制可能与Nrf2/HO-1信号通路有关。

Abstract

Objective To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG). Methods Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene. Results Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05). Conclusions FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.

关键词

1型糖尿病 / 炎症 / 氧化应激 / 血管内皮功能障碍 / 成纤维细胞生长因子19 / 人脐静脉内皮细胞

Key words

Type 1 diabetes mellitus / Inflammation / Oxidative stress / Vascular endothelial dysfunction / Fibroblast growth factor19 / Human umbilical vein endothelial cell

引用本文

导出引用
张艳君, 孝飞飞, 李晓花, . FGF19通过激活Nrf2/HO-1信号通路减轻血管内皮细胞炎症损伤的机制研究[J]. 中国当代儿科杂志. 2025, 27(5): 601-608 https://doi.org/10.7499/j.issn.1008-8830.2411076
Yan-Jun ZHANG, Fei-Fei XIAO, Xiao-Hua LI, et al. FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(5): 601-608 https://doi.org/10.7499/j.issn.1008-8830.2411076

参考文献

1
袁雪雯, 王旭, 唐宁, 等. 1型糖尿病伴糖尿病酮症酸中毒患儿发生急性肾损伤的临床研究[J]. 中国当代儿科杂志, 2022, 24(8): 858-862. PMCID: PMC9425873. DOI: 10.7499/j.issn.1008-8830.2203123 .
2
Yu MG, Gordin D, Fu J, et al. Protective factors and the pathogenesis of complications in diabetes[J]. Endocr Rev, 2024, 45(2): 227-252. PMCID: PMC10911956. DOI: 10.1210/endrev/bnad030 .
3
Zhou X, Yu L, Zhao Y, et al. Panvascular medicine: an emerging discipline focusing on atherosclerotic diseases[J]. Eur Heart J, 2022, 43(43): 4528-4531. DOI: 10.1093/eurheartj/ehac448 .
4
Eelen G, de Zeeuw P, Simons M, et al. Endothelial cell metabolism in normal and diseased vasculature[J]. Circ Res, 2015, 116(7): 1231-1244. PMCID: PMC4380230. DOI: 10.1161/CIRCRESAHA.116.302855 .
5
Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease[J]. EMBO Mol Med, 2014, 6(9): 1105-1120. PMCID: PMC4197858. DOI: 10.15252/emmm.201404156 .
6
Antar SA, Abdo W, Taha RS, et al. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats[J]. Life Sci, 2022, 291: 120260. DOI: 10.1016/j.lfs.2021.120260 .
7
于馨雅, 申元英, 郭乐. Nrf2/HO-1通路在氧化应激和炎性反应中的作用[J]. 医学研究杂志, 2023, 52(7): 19-22. DOI: 10.11969/j.issn.1673-548X.2023.07.005 .
8
Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221-3247. PMCID: PMC4967105. DOI: 10.1007/s00018-016-2223-0 .
9
Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66: 102852. PMCID: PMC10462885. DOI: 10.1016/j.redox.2023.102852 .
10
Ryan KK, Kohli R, Gutierrez-Aguilar R, et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats[J]. Endocrinology, 2013, 154(1): 9-15. PMCID: PMC3529386. DOI: 10.1210/en.2012-1891 .
11
Li X, Wu D, Tian Y. Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of AMPK/Nrf2/HO-1 pathway[J]. Biochem Biophys Res Commun, 2018, 502(1): 62-68. DOI: 10.1016/j.bbrc.2018.05.121 .
12
Fang Y, Zhao Y, He S, et al. Overexpression of FGF19 alleviates hypoxia/reoxygenation-induced injury of cardiomyocytes by regulating GSK-3β/Nrf2/ARE signaling[J]. Biochem Biophys Res Commun, 2018, 503(4): 2355-2362. DOI: 10.1016/j.bbrc.2018.06.161 .
13
Gadaleta RM, Moschetta A. Metabolic messengers: fibroblast growth factor 15/19[J]. Nat Metab, 2019, 1(6): 588-594. DOI: 10.1038/s42255-019-0074-3 .
14
Somm E, Jornayvaz FR. Fibroblast growth factor 15/19: from basic functions to therapeutic perspectives[J]. Endocr Rev, 2018, 39(6): 960-989. DOI: 10.1210/er.2018-00134 .
15
Wang D, Zhu W, Li J, et al. Serum concentrations of fibroblast growth factors 19 and 21 in women with gestational diabetes mellitus: association with insulin resistance, adiponectin, and polycystic ovary syndrome history[J]. PLoS One, 2013, 8(11): e81190. PMCID: PMC3834317. DOI: 10.1371/journal.pone.0081190 .
16
Fon Tacer K, Bookout AL, Ding X, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse[J]. Mol Endocrinol, 2010, 24(10): 2050-2064. PMCID: PMC2954642. DOI: 10.1210/me.2010-0142 .
17
Hu J, Tang Y, Liu H, et al. Decreased serum fibroblast growth factor 19 level is a risk factor for type 1 diabetes[J]. Ann Transl Med, 2021, 9(5): 376. PMCID: PMC8033349. DOI: 10.21037/atm-20-5203 .
18
Perry RJ, Lee S, Ma L, et al. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis[J]. Nat Commun, 2015, 6: 6980. PMCID: PMC4413509. DOI: 10.1038/ncomms7980 .
19
Stejskal D, Karpísek M, Hanulová Z, et al. Fibroblast growth factor-19: development, analytical characterization and clinical evaluation of a new ELISA test[J]. Scand J Clin Lab Invest, 2008, 68(6): 501-507. DOI: 10.1080/00365510701854967 .
20
Lai Y, Wang H, Xia X, et al. Serum fibroblast growth factor 19 is decreased in patients with overt hypothyroidism and subclinical hypothyroidism[J]. Medicine (Baltimore), 2016, 95(39): e5001. PMCID: PMC5265952. DOI: 10.1097/MD.0000000000005001 .
21
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, et al. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy[J]. J Pathol, 2023, 261(3): 335-348. DOI: 10.1002/path.6193 .
22
Michiels C. Endothelial cell functions[J]. J Cell Physiol, 2003, 196(3): 430-443. DOI: 10.1002/jcp.10333 .
23
Wang J, Alexanian A, Ying R, et al. Acute exposure to low glucose rapidly induces endothelial dysfunction and mitochondrial oxidative stress: role for AMP kinase[J]. Arterioscler Thromb Vasc Biol, 2012, 32(3): 712-720. PMCID: PMC3319449. DOI: 10.1161/ATVBAHA.111.227389 .
24
Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes[J]. J Clin Invest, 1994, 94(1): 110-117. PMCID: PMC296288. DOI: 10.1172/JCI117296 .
25
Li L, Wang H, Pang S, et al. rhFGF-21 accelerates corneal epithelial wound healing through the attenuation of oxidative stress and inflammatory mediators in diabetic mice[J]. J Biol Chem, 2023, 299(9): 105127. PMCID: PMC10481360. DOI: 10.1016/j.jbc.2023.105127 .
26
Liu T, Tang X, Cui Y, et al. Fibroblast growth factor 19 improves LPS-induced lipid disorder and organ injury by regulating metabolomic characteristics in mice[J]. Oxid Med Cell Longev, 2022, 2022: 9673512. PMCID: PMC9279090. DOI: 10.1155/2022/9673512 .
27
Zhang Q, Liu J, Duan H, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res, 2021, 34: 43-63. PMCID: PMC8655139. DOI: 10.1016/j.jare.2021.06.023 .
28
Mansouri A, Reiner Ž, Ruscica M, et al. Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases[J]. J Clin Med, 2022, 11(5): 1313. PMCID: PMC8911353. DOI: 10.3390/jcm11051313 .
29
Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther, 2022, 7(1): 78. PMCID: PMC8913803. DOI: 10.1038/s41392-022-00925-z .
30
Carvalho MB, Jorge GMCP, Zanardo LW, et al. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials[J]. Am J Physiol Endocrinol Metab, 2024, 327(3): E279-E289. DOI: 10.1152/ajpendo.00156.2024 .
31
Li X, Lu W, Kharitonenkov A, et al. Targeting the FGF19–FGFR4 pathway for cholestatic, metabolic, and cancerous diseases[J]. J Intern Med, 2024, 295(3): 292-312. DOI: 10.1111/joim.13767 .

作者贡献声明

张艳君负责研究设计;张艳君、孝飞飞、李晓花、桑义、刘超越负责实验;张艳君负责数据分析;张艳君、李建厂负责撰写论文;李建厂、张艳君、唐慎华负责论文修改。

基金

山东省医药卫生科技发展计划项目(2017WS038)

编委: 杨丹

版权

版权所有 © 2023中国当代儿科杂志
PDF(836 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/