基于液相色谱质谱法对儿童支气管哮喘脂质分析的前瞻性研究

冯特, 谢利娜, 张玉会, 郭燕军

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (6) : 716-722.

PDF(684 KB)
HTML
PDF(684 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (6) : 716-722. DOI: 10.7499/j.issn.1008-8830.2411112
论著·临床研究

基于液相色谱质谱法对儿童支气管哮喘脂质分析的前瞻性研究

作者信息 +

Lipid analysis in children with bronchial asthma based on liquid chromatography-mass spectrometry: a prospective study

Author information +
文章历史 +

摘要

目的 探索支气管哮喘(简称哮喘)患儿的脂质组学特征并寻找潜在的哮喘生物标志物。 方法 前瞻性地纳入26例哮喘患儿作为哮喘组,20例健康儿童作为健康对照组。根据IgE水平将哮喘组分为特应性亚组(13例)和非特应性亚组(13例)。采用液相色谱质谱法检测两组血清脂质代谢物,并对数据进行统计分析和可视化。 结果 46例儿童共检出1 435种脂质,主要为甘油磷脂(625/1 435,43.55%)。哮喘组和健康对照组的血清脂质谱存在明显代谢差异。共筛选出12种具显著性差异的脂质,受试者操作特征曲线分析显示,磷脂酰丝氨酸(phosphatidylserine, PS)(18∶0/20∶4)、神经酰胺(ceramide, Cer)(c16∶0)对哮喘的诊断价值最高(P<0.05)。特应性亚组的PS(18∶0/20∶4)和PS(18∶0/22∶6)相对丰度高于非特应性亚组(P<0.05),且与哮喘患儿的总IgE水平呈正相关(分别r=0.675、0.740,P<0.05)。 结论 哮喘患儿存在显著的脂质代谢紊乱,主要表现为甘油磷脂代谢异常。其中,PS(18∶0/20∶4)和Cer(c16∶0)水平变化具有特异性,可作为潜在的哮喘诊断生物标志物。并且,PS(18∶0/20∶4)和PS(18∶0/22∶6)水平与血清总IgE水平呈正相关关系,提示其可能参与哮喘的免疫调节过程。

Abstract

Objective To explore the lipidomic characteristics of children with bronchial asthma (hereafter referred to as asthma) and identify potential biomarkers for asthma. Methods A total of 26 asthmatic children were prospectively enrolled as the asthma group, and 20 healthy children served as the healthy control group. The asthma group was further divided into atopic (n=13) and non-atopic (n=13) subgroups based on IgE levels. Serum lipid metabolites were analyzed using liquid chromatography-mass spectrometry, followed by statistical analysis and data visualization. Results A total of 1 435 lipids were detected in the 46 children, primarily glycerophospholipids (625/1 435, 43.55%). Significant differences were observed in serum lipid profiles between the asthma and control groups. Twelve significantly differential lipids were identified, with receiver operating characteristic curve analysis showing that phosphatidylserine (PS)(18:0/20:4) and ceramide (Cer)(c16:0) exhibited the highest diagnostic value for asthma. The relative abundances of PS(18:0/20:4) and PS(18:0/22:6) were higher in the atopic subgroup than in the non-atopic subgroup (P<0.05) and positively correlated with total IgE levels in asthmatic children (r=0.675 and 0.740, respectively; P<0.05). Conclusions Asthmatic children exhibit significant lipid metabolic disturbances, primarily characterized by abnormal glycerophospholipid metabolism. Among these, PS(18:0/20:4) and Cer(c16:0) demonstrate specific alterations and may serve as potential diagnostic biomarkers for asthma. Furthermore, the positive correlation between PS(18:0/20:4) and PS(18:0/22:6) levels and serum total IgE suggests their possible involvement in immune regulation in asthma.

关键词

支气管哮喘 / 生物标志物 / 脂质组学 / 儿童

Key words

Bronchial asthma / Biomarker / Lipidomics / Child

引用本文

导出引用
冯特, 谢利娜, 张玉会, . 基于液相色谱质谱法对儿童支气管哮喘脂质分析的前瞻性研究[J]. 中国当代儿科杂志. 2025, 27(6): 716-722 https://doi.org/10.7499/j.issn.1008-8830.2411112
Te FENG, Li-Na XIE, Yu-Hui ZHANG, et al. Lipid analysis in children with bronchial asthma based on liquid chromatography-mass spectrometry: a prospective study[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(6): 716-722 https://doi.org/10.7499/j.issn.1008-8830.2411112

参考文献

1
中国医药教育协会儿科专业委员会, 中华医学会儿科学分会呼吸学组哮喘协作组, 中国医师协会呼吸医师分会儿科呼吸工作委员会, 等. 中国儿童支气管哮喘诊治现状及发展策略(2022)[J]. 中华实用儿科临床杂志, 2023, 38(9): 647-680. DOI: 10.3760/cma.j.cn101070-20230426-00332 .
2
Teague WG, Griffiths CD, Boyd K, et al. A novel syndrome of silent rhinovirus-associated bronchoalveolitis in children with recurrent wheeze[J]. J Allergy Clin Immunol, 2024, 154(3): 571-579.e6. DOI: 10.1016/j.jaci.2024.04.027 .
3
Jaishy B, Abel ED. Lipids, lysosomes, and autophagy[J]. J Lipid Res, 2016, 57(9): 1619-1635. PMCID: PMC5003162. DOI: 10.1194/jlr.R067520 .
4
Zuo L, Wijegunawardana D. Redox role of ROS and inflammation in pulmonary diseases[J]. Adv Exp Med Biol, 2021, 1304: 187-204. DOI: 10.1007/978-3-030-68748-9_11 .
5
Chen Y, Checa A, Zhang P, et al. Sphingolipid classes and the interrelationship with pediatric asthma and asthma risk factors[J]. Allergy, 2024, 79(2): 404-418. PMCID: PMC11175620. DOI: 10.1111/all.15942 .
6
Quinn KD, Schedel M, Nkrumah-Elie Y, et al. Dysregulation of metabolic pathways in a mouse model of allergic asthma[J]. Allergy, 2017, 72(9): 1327-1337. DOI: 10.1111/all.13144 .
7
赵蕴伟, 徐意芹, 李爽, 等. 哮喘发作期血清S1P水平对哮喘患者病情严重程度的评估价值[J]. 中华危重病急救医学, 2017, 29(9): 794-798. DOI: 10.3760/cma.j.issn.2095-4352.2017.09.006 .
8
Lejeune S, Kaushik A, Parsons ES, et al. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy[J]. J Allergy Clin Immunol, 2024, 153(2): 418-434. DOI: 10.1016/j.jaci.2023.09.040 .
9
中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. DOI: 10.3760/cma.j.cn112147-20200618-00721 .
10
Li WJ, Zhao Y, Gao Y, et al. Lipid metabolism in asthma: immune regulation and potential therapeutic target[J]. Cell Immunol, 2021, 364: 104341. DOI: 10.1016/j.cellimm.2021.104341 .
11
Jia Y, Wang H, Ma B, et al. Lipid metabolism-related genes are involved in the occurrence of asthma and regulate the immune microenvironment[J]. BMC Genomics, 2024, 25(1): 129. PMCID: PMC10832186. DOI: 10.1186/s12864-023-09795-3 .
12
Rago D, Pedersen CT, Huang M, et al. Characteristics and mechanisms of a sphingolipid-associated childhood asthma endotype[J]. Am J Respir Crit Care Med, 2021, 203(7): 853-863. PMCID: PMC8017574. DOI: 10.1164/rccm.202008-3206OC .
13
Pang Z, Wang G, Wang C, et al. Serum metabolomics analysis of asthma in different inflammatory phenotypes: a cross-sectional study in Northeast China[J]. Biomed Res Int, 2018, 2018: 2860521. PMCID: PMC6174811. DOI: 10.1155/2018/2860521 .
14
Zhang Q, Xu H, Liu R, et al. A novel strategy for targeted lipidomics based on LC-tandem-MS parameters prediction, quantification, and multiple statistical data mining: evaluation of lysophosphatidylcholines as potential cancer biomarkers[J]. Anal Chem, 2019, 91(5): 3389-3396. DOI: 10.1021/acs.analchem.8b04715 .
15
Lemke G. Phosphatidylserine is the signal for TAM receptors and their ligands[J]. Trends Biochem Sci, 2017, 42(9): 738-748. PMCID: PMC5600686. DOI: 10.1016/j.tibs.2017.06.004 .
16
Kang YP, Lee WJ, Hong JY, et al. Novel approach for analysis of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: lipid levels in asthmatics and corticosteroid-treated asthmatic patients[J]. J Proteome Res, 2014, 13(9): 3919-3929. DOI: 10.1021/pr5002059 .
17
Wang S, Tang K, Lu Y, et al. Revealing the role of glycerophospholipid metabolism in asthma through plasma lipidomics[J]. Clin Chim Acta, 2021, 513: 34-42. DOI: 10.1016/j.cca.2020.11.026 .
18
Wang C, Jiang S, Zhang S, et al. Research progress of metabolomics in asthma[J]. Metabolites, 2021, 11(9): 567. PMCID: PMC8466166. DOI: 10.3390/metabo11090567 .
19
Cala MP, Agulló‐Ortuño MT, Prieto‐García E, et al. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study[J]. J Cachexia Sarcopenia Muscle, 2018, 9(2): 348-357. PMCID: PMC5879957. DOI: 10.1002/jcsm.12270 .
20
Elvas F, Stroobants S, Wyffels L. Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis[J]. Apoptosis, 2017, 22(8): 971-987. DOI: 10.1007/s10495-017-1384-0 .
21
Shinzawa-Itoh K, Sugimura T, Misaki T, et al. Monomeric structure of an active form of bovine cytochrome c oxidase[J]. Proc Natl Acad Sci U S A, 2019, 116(40): 19945-19951. PMCID: PMC6778200 . DOI: 10.1073/pnas.1907183116 .
22
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. PMCID: PMC5506843. DOI: 10.1038/nchembio.2238 .
23
Ried JS, Baurecht H, Stückler F, et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma[J]. Allergy, 2013, 68(5): 629-636. DOI: 10.1111/all.12110 .
24
Pascoe CD, Jha A, Ryu MH, et al. Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction[J]. Eur Respir J, 2021, 57(2): 2000839. DOI: 10.1183/13993003.00839-2020 .
25
Lam M, Bourke JE. Solving the riddle: targeting the imbalance of sphingolipids in asthma to oppose airway hyperresponsiveness[J]. Am J Respir Cell Mol Biol, 2020, 63(5): 555-557. PMCID: PMC7605168. DOI: 10.1165/rcmb.2020-0324ED .
26
Tran TT, Postal BG, Demignot S, et al. Short term palmitate supply impairs intestinal insulin signaling via ceramide production[J]. J Biol Chem, 2016, 291(31): 16328-16338. PMCID: PMC4965580 . DOI: 10.1074/jbc.M115.709626 .
27
James BN, Oyeniran C, Sturgill JL, et al. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma[J]. J Allergy Clin Immunol, 2021, 147(5): 1936-1948.e9. PMCID: PMC8081742. DOI: 10.1016/j.jaci.2020.10.024 .
28
Guo C, Sun L, Zhang L, et al. Serum sphingolipid profile in asthma[J]. J Leukoc Biol, 2021, 110(1): 53-59. DOI: 10.1002/JLB.3MA1120-719R .
29
Jiang T, Dai L, Li P, et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(2): 158853. DOI: 10.1016/j.bbalip.2020.158853 .
30
Georas SN. LPA and autotaxin: potential drug targets in asthma?[J]. Cell Biochem Biophys, 2021, 79(3): 445-448. PMCID: PMC8551058. DOI: 10.1007/s12013-021-01023-7 .
31
Yoder M, Zhuge Y, Yuan Y, et al. Bioactive lysophosphatidylcholine 16∶0 and 18∶0 are elevated in lungs of asthmatic subjects[J]. Allergy Asthma Immunol Res, 2014, 6(1): 61-65. PMCID: PMC3881403. DOI: 10.4168/aair.2014.6.1.61 .
32
Zubeldia-Varela E, Blanco-Pérez F, Barker-Tejeda TC, et al. The impact of high-IgE levels on metabolome and microbiome in experimental allergic enteritis[J]. Allergy, 2024, 79(12): 3430-3447. PMCID: PMC11657046. DOI: 10.1111/all.16202 .
33
Dichlberger A, Schlager S, Kovanen PT, et al. Lipid droplets in activated mast cells: a significant source of triglyceride-derived arachidonic acid for eicosanoid production[J]. Eur J Pharmacol, 2016, 785: 59-69. DOI: 10.1016/j.ejphar.2015.07.020 .

作者贡献声明

冯特负责研究设计、数据采集分析及论文撰写;谢利娜、张玉会参与数据收集及统计分析工作;郭燕军对研究提供了指导性的贡献。


编委: 王颖

版权

版权所有 © 2023中国当代儿科杂志
PDF(684 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/