肠道微生物与儿童支气管哮喘的研究进展

喻雷, 吴茂兰, 郑湘榕

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (5) : 623-628.

PDF(525 KB)
HTML
PDF(525 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (5) : 623-628. DOI: 10.7499/j.issn.1008-8830.2411113
综述

肠道微生物与儿童支气管哮喘的研究进展

作者信息 +

Research progress on the relationship between gut microbiota and childhood bronchial asthma

Author information +
文章历史 +

摘要

支气管哮喘(简称哮喘)是一种复杂的气道炎症性疾病,影响全球约1亿儿童,给社会和家庭带来沉重负担。研究表明,肠道微生物群对于儿童哮喘的发生和发展起重要作用。该文对肠道微生物群与儿童哮喘关系的研究进展进行综述。通过阐述肠道微生物的组成、功能及与宿主的关系,揭示其构成和功能的改变对哮喘发生发展的影响,同时探讨将调节肠道微生物群作为哮喘治疗新策略的潜在价值和应用前景,为深入研究肠道微生物与儿童哮喘发病机制,开发新治疗手段提供理论参考。

Abstract

Bronchial asthma (asthma) is a complex inflammatory airway disease affecting approximately 100 million children worldwide, imposing a heavy burden on society and families. Studies have shown that the gut microbiota plays a significant role in the occurrence and development of childhood asthma. This paper reviews the research progress on the relationship between gut microbiota and childhood asthma. By elucidating the composition, function, and relationship with the host of gut microbiota, the impact of changes in its composition and function on the development of asthma is revealed. Furthermore, the potential value and application prospects of modulating gut microbiota as a new strategy for asthma treatment are discussed, providing a theoretical reference for in-depth research on the relationship between gut microbiota and the onset of childhood asthma and the development of new therapeutic approaches.

关键词

支气管哮喘 / 肠道微生物群 / 发病机制 / 治疗 / 儿童

Key words

Bronchial asthma / Gut microbiota / Pathogenesis / Treatment / Child

引用本文

导出引用
喻雷, 吴茂兰, 郑湘榕. 肠道微生物与儿童支气管哮喘的研究进展[J]. 中国当代儿科杂志. 2025, 27(5): 623-628 https://doi.org/10.7499/j.issn.1008-8830.2411113
Lei YU, Mao-Lan WU, Xiang-Rong ZHENG. Research progress on the relationship between gut microbiota and childhood bronchial asthma[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(5): 623-628 https://doi.org/10.7499/j.issn.1008-8830.2411113

参考文献

1
Agache I, Eguiluz-Gracia I, Cojanu C, et al. Advances and highlights in asthma in 2021[J]. Allergy, 2021, 76(11): 3390-3407. DOI: 10.1111/all.15054 .
2
Miller RL, Grayson MH, Strothman K. Advances in asthma: new understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management[J]. J Allergy Clin Immunol, 2021, 148(6): 1430-1441. DOI: 10.1016/j.jaci.2021.10.001 .
3
Wu G, Xu T, Zhao N, et al. A core microbiome signature as an indicator of health[J]. Cell, 2024, 187(23): 6550-6565.e11. DOI: 10.1016/j.cell.2024.09.019 .
4
Barcik W, Boutin RCT, Sokolowska M, et al. The role of lung and gut microbiota in the pathology of asthma[J]. Immunity, 2020, 52(2): 241-255. PMCID: PMC7128389. DOI: 10.1016/j.immuni.2020.01.007 .
5
Strachan DP. Hay fever, hygiene, and household size[J]. BMJ, 1989, 299(6710): 1259-1260. PMCID: PMC1838109. DOI: 10.1136/bmj.299.6710.1259 .
6
Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma[J]. N Engl J Med, 2011, 364(8): 701-709. DOI: 10.1056/NEJMoa1007302 .
7
Braun-Fahrländer C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children[J]. N Engl J Med, 2002, 347(12): 869-877. DOI: 10.1056/NEJMoa020057 .
8
DeVries A, McCauley K, Fadrosh D, et al. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development[J]. Allergy, 2022, 77(12): 3617-3628. PMCID: PMC9712226. DOI: 10.1111/all.15442 .
9
Li X, Brejnrod A, Thorsen J, et al. Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults[J]. Nat Commun, 2023, 14(1): 8526. PMCID: PMC10746713. DOI: 10.1038/s41467-023-44289-6 .
10
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2): 159-166. DOI: 10.1038/nm.3444 .
11
Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma[J]. Nat Med, 2020, 26(11): 1766-1775. DOI: 10.1038/s41591-020-1095-x .
12
Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma[J]. Sci Transl Med, 2015, 7(307): 307ra152. DOI: 10.1126/scitranslmed.aab2271 .
13
田娇, 徐勇胜. 肠道微生物在儿童支气管哮喘中的研究进展[J]. 中国妇幼保健, 2023, 38(5): 967-970. DOI: 10.19829/j.zgfybj.issn.1001-4411.2023.05.050 .
14
李媛, 冯晨. 肠道菌群代谢产物在儿童急性髓系白血病中的研究进展[J]. 中国临床医生杂志, 2023, 51(10): 1154-1157. DOI: 10.3969/j.issn.2095-8552.2023.10.007 .
15
Lee-Sarwar KA, Lasky-Su J, Kelly RS, et al. Gut microbial-derived metabolomics of asthma[J]. Metabolites, 2020, 10(3): 97. PMCID: PMC7142494. DOI: 10.3390/metabo10030097 .
16
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455. PMCID: PMC3869884. DOI: 10.1038/nature12726 .
17
Huang C, Du W, Ni Y, et al. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo [J]. Clin Exp Immunol, 2022, 207(1): 53-64. PMCID: PMC8802183. DOI: 10.1093/cei/uxab028 .
18
Yip W, Hughes MR, Li Y, et al. Butyrate shapes immune cell fate and function in allergic asthma[J]. Front Immunol, 2021, 12: 628453. PMCID: PMC7917140. DOI: 10.3389/fimmu.2021.628453 .
19
Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells[J]. Nature, 2020, 581(7809): 475-479. PMCID: PMC7540721. DOI: 10.1038/s41586-020-2193-0 .
20
Arifuzzaman M, Won TH, Li TT, et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation[J]. Nature, 2022, 611(7936): 578-584. PMCID: PMC10576985. DOI: 10.1038/s41586-022-05380-y .
21
McLoughlin R, Berthon BS, Rogers GB, et al. Soluble fibre supplementation with and without a probiotic in adults with asthma: a 7-day randomised, double blind, three way cross-over trial[J]. EBioMedicine, 2019, 46: 473-485. PMCID: PMC6712277. DOI: 10.1016/j.ebiom.2019.07.048 .
22
Pothoven KL, Schleimer RP. The barrier hypothesis and oncostatin M: restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease[J]. Tissue Barriers, 2017, 5(3): e1341367. PMCID: PMC5571776. DOI: 10.1080/21688370.2017.1341367 .
23
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions?[J]. Nat Rev Immunol, 2021, 21(11): 739-751. DOI: 10.1038/s41577-021-00538-7 .
24
Yazici D, Ogulur I, Pat Y, et al. The epithelial barrier: the gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions[J]. Semin Immunol, 2023, 70: 101846. DOI: 10.1016/j.smim.2023.101846 .
25
Vestad B, Ueland T, Lerum TV, et al. Respiratory dysfunction three months after severe COVID-19 is associated with gut microbiota alterations[J]. J Intern Med, 2022, 291(6): 801-812. PMCID: PMC9115297. DOI: 10.1111/joim.13458 .
26
Lunjani N, Albrich WC, Suh N, et al. Higher levels of bacterial DNA in serum associate with severe and fatal COVID-19[J]. Allergy, 2022, 77(4): 1312-1314. PMCID: PMC9303653. DOI: 10.1111/all.15218 .
27
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci U S A, 2010, 107(33): 14691-14696. PMCID: PMC2930426 . DOI: 10.1073/pnas.1005963107 .
28
Tsukuda N, Yahagi K, Hara T, et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life[J]. ISME J, 2021, 15(9): 2574-2590. PMCID: PMC8397723. DOI: 10.1038/s41396-021-00937-7 .
29
Halnes I, Baines KJ, Berthon BS, et al. Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma[J]. Nutrients, 2017, 9(1): 57. PMCID: PMC5295101. DOI: 10.3390/nu9010057 .
30
Spacova I, Van Beeck W, Seys S, et al. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model[J]. Gut Microbes, 2020, 11(6): 1729-1744. PMCID: PMC7524350. DOI: 10.1080/19490976.2020.1766345 .
31
Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life[J]. Cell, 2021, 184(15): 3884-3898.e11. DOI: 10.1016/j.cell.2021.05.030 .
32
Mahooti M, Abdolalipour E, Salehzadeh A, et al. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice[J]. World J Microbiol Biotechnol, 2019, 35(6): 91. DOI: 10.1007/s11274-019-2667-0 .
33
Huang CF, Chie WC, Wang IJ. Efficacy of Lactobacillus administration in school-age children with asthma: a randomized, placebo-controlled trial[J]. Nutrients, 2018, 10(11): 1678. PMCID: PMC6265750. DOI: 10.3390/nu10111678 .
34
Wei X, Jiang P, Liu J, et al. Association between probiotic supplementation and asthma incidence in infants: a meta-analysis of randomized controlled trials[J]. J Asthma, 2020, 57(2): 167-178. DOI: 10.1080/02770903.2018.1561893 .
35
Park YT, Kim T, Ham J, et al. Physiological activity of E. coli engineered to produce butyric acid[J]. Microb Biotechnol, 2022, 15(3): 832-843. PMCID: PMC8913873. DOI: 10.1111/1751-7915.13795 .
36
Baunwall SMD, Andreasen SE, Hansen MM, et al. Faecal microbiota transplantation for first or second Clostridioides difficile infection (EarlyFMT): a randomised, double-blind, placebo-controlled trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(12): 1083-1091. DOI: 10.1016/S2468-1253(22)00276-X .
37
Yadegar A, Bar-Yoseph H, Monaghan TM, et al. Fecal microbiota transplantation:current challenges and future landscapes[J]. Clin Microbiol Rev, 2024, 37(2): e0006022. PMCID: PMC11325845. DOI: 10.1128/cmr.00060-22 .
38
Shi W, Xu N, Wang X, et al. Helminth therapy for immune-mediated inflammatory diseases: current and future perspectives[J]. J Inflamm Res, 2022, 15: 475-491. PMCID: PMC8789313. DOI: 10.2147/JIR.S348079 .
39
Zaiss MM, Rapin A, Lebon L, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation[J]. Immunity, 2015, 43(5): 998-1010. PMCID: PMC4658337. DOI: 10.1016/j.immuni.2015.09.012 .
40
Brödel AK, Charpenay LH, Galtier M, et al. In situ targeted base editing of bacteria in the mouse gut[J]. Nature, 2024, 632(8026): 877-884. PMCID: PMC11338833. DOI: 10.1038/s41586-024-07681-w .
41
Kamm C, Beisel CL. Phages to the rescue: in situ editing of the gut microbiota[J]. Trends Microbiol, 2024, 32(10): 934-935. DOI: 10.1016/j.tim.2024.09.001 .

作者贡献声明

喻雷负责文章构思、撰写和修改;吴茂兰参与文章设计,负责参考文献的收集与分析;郑湘榕参与文章设计、修改,负责审校。

基金

中南大学研究生科研创新项目(1053320232125)

编委: 杨丹

版权

版权所有 © 2023中国当代儿科杂志
PDF(525 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/