云南地区3 001例新生儿基因筛查及随访结果分析

李遨宇, 朱宝生, 章锦曼, 镡颖, 林军岳, 张杰, 周笑颜, 陈红, 李苏云, 丰娜, 章印红

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (6) : 654-660.

PDF(613 KB)
HTML
PDF(613 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (6) : 654-660. DOI: 10.7499/j.issn.1008-8830.2412134
论著·临床研究

云南地区3 001例新生儿基因筛查及随访结果分析

作者信息 +

Genetic screening and follow-up results in 3 001 newborns in the Yunnan region

Author information +
文章历史 +

摘要

目的 评估新生儿基因筛查(genetic newborn screening, gNBS)在云南地区的应用价值。 方法 采用前瞻性研究方法,随机选取2021年2—12月在云南地区出生的3 001例新生儿为研究对象,采用传统新生儿筛查(traditional newborn screening, tNBS)检测生化指标,同时采用靶向二代测序技术对156种疾病相关的159个基因进行筛查。对筛查阳性新生儿进行验证和确诊试验,确诊患儿接受规范治疗和长期随访。 结果 3 001例新生儿中,基因初筛阳性者166例,占5.53%;基因携带者1 435例,占47.82%。变异频率前10位的基因为GJB2(21.29%)、DUOX2(7.27%)、HBA(6.14%)、GALC(3.63%)、SLC12A3(3.33%)、HBB(3.03%)、G6PD(2.94%)、SLC25A13(2.90%)、PAH(2.73%)和UNC13D(2.68%)。tNBS和gNBS初筛阳性新生儿中,分别确诊33例(1.10%)和47例(1.57%)患儿,gNBS+tNBS共确诊48例(1.60%)患儿。受试者操作特征曲线分析显示,tNBS、gNBS和gNBS+tNBS确诊疾病的曲线下面积(area under the curve, AUC)分别为0.866、0.982和0.968(P<0.05)。DeLong检验显示,gNBS、gNBS+tNBS的AUC高于tNBS(P<0.05)。 结论 gNBS能够扩展疾病检测范围,与tNBS联合应用,可显著缩短诊断时间,实现尽早干预治疗。

Abstract

Objective To evaluate the application value of genetic newborn screening (gNBS) in the Yunnan region. Methods A prospective study was conducted with a random selection of 3 001 newborns born in the Yunnan region from February to December 2021. Traditional newborn screening (tNBS) was used to test biochemical indicators, and targeted next-generation sequencing was employed to screen 159 genes related to 156 diseases. Positive-screened newborns underwent validation and confirmation tests, and confirmed cases received standardized treatment and long-term follow-up. Results Among the 3 001 newborns, 166 (5.53%) were initially positive for genetic screening, and 1 435 (47.82%) were genetic carriers. The top ten genes with the highest variation frequency were GJB2 (21.29%), DUOX2 (7.27%), HBA (6.14%), GALC (3.63%), SLC12A3 (3.33%), HBB (3.03%), G6PD (2.94%), SLC25A13 (2.90%), PAH (2.73%), and UNC13D (2.68%). Among the initially positive newborns from tNBS and gNBS, 33 (1.10%) and 47 (1.57%) cases were confirmed, respectively. A total of 48 (1.60%) cases were confirmed using gNBS+tNBS. The receiver operating characteristic curve analysis demonstrated that the areas under the curve for tNBS, gNBS, and gNBS+tNBS in diagnosing diseases were 0.866, 0.982, and 0.968, respectively (P<0.05). DeLong's test showed that the area under the curve for gNBS and gNBS+tNBS was higher than that for tNBS (P<0.05). Conclusions gNBS can expand the range of disease detection, and its combined use with tNBS can significantly shorten diagnosis time, enabling early intervention and treatment.

关键词

新生儿筛查 / 基因 / 变异 / 靶向二代测序 / 新生儿

Key words

Newborn screening / Gene / Variant / Targeted next-generation sequencing / Newborn

引用本文

导出引用
李遨宇, 朱宝生, 章锦曼, . 云南地区3 001例新生儿基因筛查及随访结果分析[J]. 中国当代儿科杂志. 2025, 27(6): 654-660 https://doi.org/10.7499/j.issn.1008-8830.2412134
Ao-Yu LI, Bao-Sheng ZHU, Jin-Man ZHANG, et al. Genetic screening and follow-up results in 3 001 newborns in the Yunnan region[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(6): 654-660 https://doi.org/10.7499/j.issn.1008-8830.2412134

参考文献

1
Baple EL, Scott RH, Banka S, et al. Exploring the benefits, harms and costs of genomic newborn screening for rare diseases[J]. Nat Med, 2024, 30(7): 1823-1825. DOI: 10.1038/s41591-024-03055-x .
2
章锦曼, 章印红, 韩连书, 等. 新生儿基因筛查应用现状与趋势[J]. 中国实用儿科杂志, 2023, 38(7): 498-501. DOI: 10.19538/j.ek2023070603 .
3
Luo X, Sun Y, Xu F, et al. A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns[J]. Ann Transl Med, 2020, 8(17): 1058. PMCID: PMC7575988. DOI: 10.21037/atm-20-1147 .
4
Kingsmore SF, Smith LD, Kunard CM, et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases[J]. Am J Hum Genet, 2022, 109(9): 1605-1619. PMCID: PMC9502059. DOI: 10.1016/j.ajhg.2022.08.003 .
5
Shah N, Brlek P, Bulić L, et al. Genomic sequencing for newborn screening: current perspectives and challenges[J]. Croat Med J, 2024, 65(3): 261-267. PMCID: PMC11157259. DOI: 10.3325/cmj.2024.65.261 .
6
Friedman JM, Cornel MC, Goldenberg AJ, et al. Genomic newborn screening: public health policy considerations and recommendations[J]. BMC Med Genomics, 2017, 10(1): 9. PMCID: PMC5320805. DOI: 10.1186/s12920-017-0247-4 .
7
He J, Kang Q, Hu J, et al. China has officially released its first national list of rare diseases[J]. Intractable Rare Dis Res, 2018, 7(2): 145-147. PMCID: PMC5982625. DOI: 10.5582/irdr.2018.01056 .
8
Fabie NAV, Pappas KB, Feldman GL. The current state of newborn screening in the United States[J]. Pediatr Clin North Am, 2019, 66(2): 369-386. DOI: 10.1016/j.pcl.2018.12.007 .
9
Bylstra Y, Kuan JL, Lim WK, et al. Population genomics in South East Asia captures unexpectedly high carrier frequency for treatable inherited disorders[J]. Genet Med, 2019, 21(1): 207-212. DOI: 10.1038/s41436-018-0008-6 .
10
国家卫生健康委员会临床检验中心新生儿遗传代谢病筛查室间质评委员会. 新生儿遗传代谢病筛查指标切值建立方法专家共识[J]. 中国实用儿科杂志, 2019, 34(11): 881-884. DOI: 10.19538/j.ek2019110601 .
11
Garg U, Dasouki M. Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects[J]. Clin Biochem, 2006, 39(4): 315-332. DOI: 10.1016/j.clinbiochem.2005.12.009 .
12
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. PMCID: PMC4544753. DOI: 10.1038/gim.2015.30 .
13
Chen T, Fan C, Huang Y, et al. Genomic sequencing as a first-tier screening test and outcomes of newborn screening[J]. JAMA Netw Open, 2023, 6(9): e2331162. PMCID: PMC10474521. DOI: 10.1001/jamanetworkopen.2023.31162 .
14
Hao C, Guo R, Hu X, et al. Newborn screening with targeted sequencing: a multicenter investigation and a pilot clinical study in China[J]. J Genet Genomics, 2022, 49(1): 13-19. DOI: 10.1016/j.jgg.2021.08.008 .
15
Yang RL, Qian GL, Wu DW, et al. A multicenter prospective study of next-generation sequencing-based newborn screening for monogenic genetic diseases in China[J]. World J Pediatr, 2023, 19(7): 663-673. PMCID: PMC10258179. DOI: 10.1007/s12519-022-00670-x .
16
顾学范. 新生儿疾病筛查[M]. 上海: 上海科学技术文献出版社, 2003.
17
庄丹燕, 王飞, 丁曙霞, 等. 新生儿高通量测序基因筛查的前瞻性研究[J]. 中华医学遗传学杂志, 2023, 40(6): 641-647. DOI: 10.3760/cma.j.cn511374-20220720-00479 .
18
Milko LV, Berg JS. Age-based genomic screening during childhood: ethical and practical considerations in public health genomics implementation[J]. Int J Neonatal Screen, 2023, 9(3): 36. PMCID: PMC10366892. DOI: 10.3390/ijns9030036 .
19
McGrath N, Hawkes CP, Mayne P, et al. Optimal timing of repeat newborn screening for congenital hypothyroidism in preterm infants to detect delayed thyroid-stimulating hormone elevation[J]. J Pediatr, 2019, 205: 77-82. DOI: 10.1016/j.jpeds.2018.09.044 .

作者贡献声明

李遨宇负责数据分析、随访与论文撰写;章锦曼、周笑颜负责临床资料收集;李苏云、丰娜负责样本收集与送检;镡颖、林军岳负责生化筛查实验;张杰、陈红负责患儿的诊断、治疗和管理;朱宝生、章印红负责方案设计、研究指导、论文修改和经费支持。

基金

云南省技术创新人才培养对象项目(202405AD350029)
云南省出生缺陷和遗传病研究重点实验室开放课题(2020ZDKFKT001)
云南省生殖妇产疾病临床医学中心开放课题(2022LCZXKF-SZ02)

编委: 王颖

版权

版权所有 © 2023中国当代儿科杂志
PDF(613 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/