中国儿童川崎病管理的DeepSeek视角

潘炎, 焦富勇

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (5) : 524-528.

PDF(514 KB)
HTML
PDF(514 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (5) : 524-528. DOI: 10.7499/j.issn.1008-8830.2502042
述评

中国儿童川崎病管理的DeepSeek视角

作者信息 +

DeepSeek perspective on managing Kawasaki disease in Chinese children

Author information +
文章历史 +

摘要

川崎病的临床管理面临早期诊断难、个体化治疗不足、信息获取滞后及多学科协作低效等挑战。该文探讨了人工智能大模型DeepSeek在川崎病管理中的应用:(1)基于多模态数据(影像、实验室及临床数据)融合分析,提升早期诊断准确性;(2)动态调整治疗方案,实现个体化精准医疗;(3)实时获取并整合全球最新诊疗指南与研究成果,优化诊疗流程;(4)提供个性化健康宣教内容,提升家长参与度;(5)构建诊疗数据共享平台,支持智能决策与多学科协作。

Abstract

Clinical management of Kawasaki disease faces several challenges, including difficulties in early diagnosis, insufficient personalized treatment, delayed access to information, and inefficient multidisciplinary collaboration. This paper explores the application of the DeepSeek AI model in the management of Kawasaki disease: (1) Enhancing early diagnosis accuracy through the integration and analysis of multimodal data (imaging, laboratory, and clinical data); (2) Dynamically adjusting treatment plans to achieve personalized medicine; (3) Integrating the latest global guidelines and research findings in real-time to optimize clinical processes; (4) Providing personalized health education content to enhance parental involvement; (5) Establishing a platform for sharing clinical data to support intelligent decision-making and multidisciplinary collaboration.

关键词

川崎病 / 诊断 / 治疗 / 指南 / DeepSeek / 儿童

Key words

Kawasaki disease / Diagnosis / Treatment / Guideline / DeepSeek / Child

引用本文

导出引用
潘炎, 焦富勇. 中国儿童川崎病管理的DeepSeek视角[J]. 中国当代儿科杂志. 2025, 27(5): 524-528 https://doi.org/10.7499/j.issn.1008-8830.2502042
Yan PAN, Fu-Yong JIAO. DeepSeek perspective on managing Kawasaki disease in Chinese children[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(5): 524-528 https://doi.org/10.7499/j.issn.1008-8830.2502042

参考文献

1
Jiao F, Pan Y, Du Z, et al. Guideline for the diagnosis and treatment of incomplete Kawasaki disease in children in China[J]. BMC Pediatr, 2024, 24(1): 477. PMCID: PMC11282762. DOI: 10.1186/s12887-024-04961-2 .
2
陕西省川崎病诊疗中心/陕西省人民医院儿童病院, 国家儿童医学中心/首都医科大学附属北京儿童医院, 上海交通大学医学院附属儿童医院, 等. 中国儿童川崎病诊疗循证指南(2023年)[J]. 中国当代儿科杂志, 2023, 25(12): 1198-1210. PMCID: PMC10731970. DOI: 10.7499/j.issn.1008-8830.2309038 .
3
张清友, 杜军保. 川崎病诊断中的若干问题[J]. 中华实用儿科临床杂志, 2020, 35(13): 961-964. DOI: 10.3760/cma.j.cn101070-20200706-01134 .
4
Gibney E. China's cheap, open AI model DeepSeek thrills scientists[J]. Nature, 2025, 638(8049): 13-14. DOI: 10.1038/d41586-025-00229-6 .
5
Normile D. Chinese firm's large language model makes a splash[J]. Science, 2025, 387(6731): 238. DOI: 10.1126/science.adv9836 .
6
Sajid MI, Ahmed S, Waqar U, et al. SARS-CoV-2: has artificial intelligence stood the test of time[J]. Chin Med J (Engl), 2022, 135(15): 1792-1802. PMCID: PMC9521771. DOI: 10.1097/CM9.0000000000002058 .
7
Jiang Z, Song W, Yan Y, et al. Automated valvular heart disease detection using heart sound with a deep learning algorithm[J]. Int J Cardiol Heart Vasc, 2024, 51: 101368. PMCID: PMC10933456. DOI: 10.1016/j.ijcha.2024.101368 .
8
Zuo F, Jing P, Sun J, et al. Deep learning-based eye-tracking analysis for diagnosis of Alzheimer's disease using 3D comprehensive visual stimuli[J]. IEEE J Biomed Health Inform, 2024, 28(5): 2781-2793. DOI: 10.1109/JBHI.2024.3365172 .
9
Payette J, Vaussenat F, Cloutier S. Deep learning framework for sensor array precision and accuracy enhancement[J]. Sci Rep, 2023, 13(1): 11237. PMCID: PMC10336090. DOI: 10.1038/s41598-023-38290-8 .
10
陕西省川崎病诊疗中心, 陕西省儿童内科疾病临床医学研究中心, 陕西省人民医院儿童病院, 等. 静脉输注免疫球蛋白在儿童川崎病中应用的专家共识[J]. 中国当代儿科杂志, 2021, 23(9): 867-876. PMCID: PMC8480171. DOI: 10.7499/j.issn.1008-8830.2107110 .
11
Gibney E. Scientists flock to DeepSeek: how they're using the blockbuster AI model[J]. Nature, 2025. Epub ahead of print.DOI: 10.1038/d41586-025-00275-0 .
12
Pan Y, Fan Q, Hu L. Treatment of immunoglobulin-resistant Kawasaki disease: a Bayesian network meta-analysis of different regimens[J]. Front Pediatr, 2023, 11: 1149519. PMCID: PMC10373588. DOI: 10.3389/fped.2023.1149519 .
13
Conroy G, Mallapaty S. How China created AI model DeepSeek and shocked the world[J]. Nature, 2025, 638(8050): 300-301. DOI: 10.1038/d41586-025-00259-0 .
14
焦富勇, 穆志龙, 杜忠东, 等. 儿童不完全性川崎病的诊治[J]. 中国当代儿科杂志, 2023, 25(3): 238-243. PMCID: PMC10032064. DOI: 10.7499/j.issn.1008-8830.2209127 .
15
陕西省川崎病诊疗中心/陕西省人民医院儿童病院, 首都医科大学附属北京儿童医院, 上海儿童医学中心, 等. 糖皮质激素在川崎病治疗中的儿科专家共识[J]. 中国当代儿科杂志, 2022, 24(3): 225-231. PMCID: PMC8974659. DOI: 10.7499/j.issn.1008-8830.2112033 .
16
陕西省川崎病诊疗中心/陕西省人民医院儿童病院, 上海交通大学附属儿童医院, 首都医科大学附属北京儿童医院, 等. 阿司匹林在川崎病治疗中的儿科专家共识[J]. 中国当代儿科杂志, 2022, 24(6): 597-603. PMCID: PMC9250407. DOI: 10.7499/j.issn.1008-8830.2203190 .
17
Smith J. Daily briefing: the pros and cons of DeepSeek[J]. Nature, 2025. Epub ahead of print. DOI: 10.1038/d41586-025-00330-w .
18
Temsah A, Alhasan K, Altamimi I, et al. DeepSeek in healthcare: revealing opportunities and steering challenges of a new open-source artificial intelligence frontier[J]. Cureus, 2025, 17(2): e79221. PMCID: PMC11836063. DOI: 10.7759/cureus.79221 .
19
中华医学会儿科学分会心血管学组, 中华医学会儿科学分会风湿学组, 中华医学会儿科学分会免疫学组, 等. 川崎病诊断和急性期治疗专家共识[J]. 中华儿科杂志, 2022, 60(1): 6-13. DOI: 10.3760/cma.j.cn112140-20211018-00879 .
20
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1): 44-56. DOI: 10.1038/s41591-018-0300-7 .

作者贡献声明

潘炎负责文献检索、论文的初稿撰写;焦富勇指导论文写作并修订论文内容。

基金

2025年湖北省积极健康研究院健康科学研究孵化项目(HAHRI2025-F022)

编委: 邓芳明

版权

版权所有 © 2023中国当代儿科杂志
PDF(514 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/