靶向二代测序技术在新生儿呼吸窘迫综合征病原体检测中的价值:一项前瞻性随机对照研究

张海红, 欧阳夏, 刘仙萍, 黄少如, 林云峰

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (10) : 1191-1198.

PDF(671 KB)
HTML
PDF(671 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (10) : 1191-1198. DOI: 10.7499/j.issn.1008-8830.2502073
论著·临床研究

靶向二代测序技术在新生儿呼吸窘迫综合征病原体检测中的价值:一项前瞻性随机对照研究

作者信息 +

Value of targeted next-generation sequencing in pathogen detection for neonates with respiratory distress syndrome: a prospective randomized controlled trial

Author information +
文章历史 +

摘要

目的 探讨靶向二代测序(targeted next-generation sequencing, tNGS)对中重度呼吸窘迫综合征(respiratory distress syndrome, RDS)新生儿病原学诊断的应用价值。 方法 采用前瞻性随机对照研究,纳入2023年12月—2024年12月福建省儿童医院收治的81例足月或近足月中重度RDS患儿,随机分为常规微生物检测(conventional microbiological test, CMT)组(n=42)和tNGS组(n=39)。CMT组经支气管镜获取支气管肺泡灌洗液或气管插管获取下呼吸道样本进行常规病原学检测(所有均送培养,部分加做聚合酶链反应或抗原检测),tNGS组在常规病原学检测的基础上联合tNGS技术进行病原体分析。对两组病原体检出率、混合感染检出率及抗菌药物使用时间等指标进行比较。 结果 tNGS组病原体检出率(18/39)显著高于CMT组(8/42)(46% vs 19%,P=0.009),其中混合感染检出率为13%(5/39),而CMT组未检出混合感染(P=0.024)。在治疗方面,tNGS组抗菌药物使用时间短于CMT组[(12±4)d vs(15±5)d,P=0.003]。 结论 tNGS能显著提高中重度RDS新生儿的病原体检出效率,具有快速识别混合感染及缩短抗菌药物疗程的优势,有临床推广价值。

Abstract

Objective To investigate the application value of targeted next-generation sequencing (tNGS) in the etiological diagnosis of moderate to severe respiratory distress syndrome (RDS) in neonates. Methods A prospective randomized controlled trial was conducted, enrolling 81 term and late-preterm neonates with moderate to severe RDS admitted to Fujian Children's Hospital between December 2023 and December 2024. Patients were randomly assigned to the conventional microbiological test (CMT) group (n=42) or the tNGS group (n=39). For routine pathogen detection, bronchoalveolar lavage fluid was obtained via bronchoscopy, and lower respiratory tract specimens were collected via the endotracheal tube; all specimens underwent culture, and some specimens additionally underwent polymerase chain reaction or antigen testing. In the tNGS group, tNGS was performed in addition to routine pathogen detection on the same specimen types. The detection rate of pathogens, the detection rate of co-infections, and the duration of antibiotic use were compared between the two groups. Results The pathogen detection rate in the tNGS group (18/39, 46%) was significantly higher than that in the CMT group (8/42, 19%) (P=0.009). The co-infection detection rate was 13% (5/39) in the tNGS group, while no co-infections were identified in the CMT group (P=0.024). Regarding treatment, the duration of antibiotic use in the tNGS group was shorter than that in the CMT group [(12±4) days vs (15±5) days, P=0.003]. Conclusions tNGS significantly improves the pathogen detection rate in neonates with moderate to severe RDS and offers advantages in the rapid identification of co-infections and reduction of antibiotic treatment duration, suggesting it has clinical utility and potential for wider adoption.

关键词

新生儿呼吸窘迫综合征 / 靶向二代测序 / 支气管肺泡灌洗液 / 新生儿

Key words

Neonatal respiratory distress syndrome / Targeted next-generation sequencing / Bronchoalveolar lavage fluid / Neonate

引用本文

导出引用
张海红, 欧阳夏, 刘仙萍, . 靶向二代测序技术在新生儿呼吸窘迫综合征病原体检测中的价值:一项前瞻性随机对照研究[J]. 中国当代儿科杂志. 2025, 27(10): 1191-1198 https://doi.org/10.7499/j.issn.1008-8830.2502073
Hai-Hong ZHANG, Xia OU-YANG, Xian-Ping LIU, et al. Value of targeted next-generation sequencing in pathogen detection for neonates with respiratory distress syndrome: a prospective randomized controlled trial[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(10): 1191-1198 https://doi.org/10.7499/j.issn.1008-8830.2502073

参考文献

[1]
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533. DOI: 10.1001/jama.2012.5669 .
[2]
刘敬. 足月新生儿呼吸窘迫综合征的诊断与治疗[J]. 中华实用儿科临床杂志, 2013, 28(14): 1117-1120. DOI: 10.3760/cma.j.issn.2095-428X.2013.14.023 .
[3]
江苏省新生儿ARDS研究协作组. 基于“柏林定义”的新生儿急性呼吸窘迫综合征临床流行病学调查研究[J]. 中华新生儿科杂志(中英文), 2018, 33(5): 339-343. DOI: 10.3760/cma.j.issn.2096-2932.2018.05.005 .
[4]
Mohy Eldeen S, Ali S, Salama H. Clinical characteristics, diagnosis, and management outcome of surfactant deficiency respiratory distress syndrome in term and near-term neonates. A retrospective observational study[J]. Acta Biomed, 2022, 93(6): e2022337. PMCID: PMC9828914. DOI: 10.23750/abm.v93i6.13794 .
[5]
Sun H, Xu F, Xiong H, et al. Characteristics of respiratory distress syndrome in infants of different gestational ages[J]. Lung, 2013, 191(4): 425-433. DOI: 10.1007/s00408-013-9475-3 .
[6]
陈安, 施丽萍, 郑季彦, 等. 晚期早产儿和足月儿呼吸窘迫综合征的临床特点[J]. 中华儿科杂志, 2008, 46(9): 654-657. DOI: 10.3321/j.issn:0578-1310.2008.09.004 .
[7]
Sweet DG, Carnielli VP, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome: 2022 update[J]. Neonatology, 2023, 120(1): 3-23. PMCID: PMC10064400. DOI: 10.1159/000528914 .
[8]
Okumura T, Horiba K, Tetsuka N, et al. Next-generation sequencing-based detection of Ureaplasma in the gastric fluid of neonates with respiratory distress and chorioamnionitis[J]. J Matern Fetal Neonatal Med, 2023, 36(1): 2207113. DOI: 10.1080/14767058.2023.2207113 .
[9]
Zheng YR, Lin SH, Chen YK, et al. Application of metagenomic next-generation sequencing in the detection of pathogens in bronchoalveolar lavage fluid of infants with severe pneumonia after congenital heart surgery[J]. Front Microbiol, 2022, 13: 954538. PMCID: PMC9391048. DOI: 10.3389/fmicb.2022.954538 .
[10]
Yang A, Chen C, Hu Y, et al. Application of metagenomic next-generation sequencing (mNGS) using bronchoalveolar lavage fluid (BALF) in diagnosing pneumonia of children[J]. Microbiol Spectr, 2022, 10(5): e0148822. PMCID: PMC9603332. DOI: 10.1128/spectrum.01488-22 .
[11]
Miao Q, Ma Y, Wang Q, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice[J]. Clin Infect Dis, 2018, 67(): S231-S240. DOI: 10.1093/cid/ciy693 .
suppl_2
[12]
Mitchell SL, Simner PJ. Next-generation sequencing in clinical microbiology: are we there yet?[J]. Clin Lab Med, 2019, 39(3): 405-418. DOI: 10.1016/j.cll.2019.05.003 .
[13]
Yin Y, Zhu P, Guo Y, et al. Enhancing lower respiratory tract infection diagnosis: implementation and clinical assessment of multiplex PCR-based and hybrid capture-based targeted next-generation sequencing[J]. EBioMedicine, 2024, 107: 105307. PMCID: PMC11403251. DOI: 10.1016/j.ebiom.2024.105307 .
[14]
Sun W, Zheng L, Kang L, et al. Comparative analysis of metagenomic and targeted next-generation sequencing for pathogens diagnosis in bronchoalveolar lavage fluid specimens[J]. Front Cell Infect Microbiol, 2024, 14: 1451440. PMCID: PMC11385274. DOI: 10.3389/fcimb.2024.1451440 .
[15]
Dai Y, Sheng K, Hu L. Diagnostic efficacy of targeted high-throughput sequencing for lower respiratory infection in preterm infants[J]. Am J Transl Res, 2022, 14(11): 8204-8214. PMCID: PMC9730095.
[16]
Balks J, Grumaz S, Mazzitelli S, et al. Microbial cell-free DNA-sequencing as an addition to conventional diagnostics in neonatal sepsis[J]. Pediatr Res, 2025, 97(2): 614-624. PMCID: PMC12015174. DOI: 10.1038/s41390-024-03448-1 .
[17]
Wang L, Zha P, Wang Y, et al. The value of macrogene second-generation sequencing in the diagnosis, guidance of drug use, and efficacy monitoring of infectious pneumonia in premature infants[J]. Comput Math Methods Med, 2022, 2022: 4398614. PMCID: PMC9581658. DOI: 10.1155/2022/4398614 .
[18]
中华医学会急诊学分会儿科学组,中华医学会儿科学分会急诊学组、新生儿学组.新生儿危重病例评分法(草案)[J].中华儿科杂志, 2001, 39(1): 42-43. DOI: 10.3760/j.issn:0578-1310.2001.01.013 .
[19]
Monahan LJ. Acute respiratory distress syndrome[J]. Curr Probl Pediatr Adolesc Health Care, 2013, 43(10): 278-284. DOI: 10.1016/j.cppeds.2013.10.004 .
[20]
Wick KD, Ware LB, Matthay MA. Acute respiratory distress syndrome[J]. BMJ, 2024, 387: e076612. DOI: 10.1136/bmj-2023-076612 .
[21]
Hecker M, Weigand MA, Mayer K. Acute respiratory distress syndrome[J]. Internist (Berl), 2012, 53(5): 557-566. DOI: 10.1007/s00108-012-3018-5 .
[22]
Lee JH, Hornik CP, Benjamin DK, et al. Risk factors for invasive candidiasis in infants >1 500 g birth weight[J]. Pediatr Infect Dis J, 2013, 32(3): 222-226. PMCID: PMC3578110. DOI: 10.1097/INF.0b013e3182769603 .
[23]
Murni IK, MacLaren G, Morrow D, et al. Perioperative infections in congenital heart disease[J]. Cardiol Young, 2017, 27(S6): S14-S21. DOI: 10.1017/S1047951117002578 .
[24]
Wei M, Mao S, Li S, et al. Comparing the diagnostic value of targeted with metagenomic next-generation sequencing in immunocompromised patients with lower respiratory tract infection[J]. Ann Clin Microbiol Antimicrob, 2024, 23(1): 88. PMCID: PMC11443791. DOI: 10.1186/s12941-024-00749-5 .
[25]
Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock[J]. Crit Care Med, 2006, 34(6): 1589-1596. DOI: 10.1097/01.CCM.0000217961.75225.E9 .
[26]
Li Y, Jiang Y, Liu H, et al. Targeted next-generation sequencing for antimicrobial resistance detection in ventilator-associated pneumonia[J]. Front Cell Infect Microbiol, 2025, 15: 1526087. PMCID: PMC11825505. DOI: 10.3389/fcimb.2025.1526087 .
[27]
Dai X, Xu K, Tong Y, et al. Application of targeted next-generation sequencing in bronchoalveolar lavage fluid for the detection of pathogens in pulmonary infections[J]. Infect Drug Resist, 2025, 18: 511-522. PMCID: PMC11784358. DOI: 10.2147/IDR.S499265 .

脚注

所有作者均声明无利益冲突。

基金

福建省临床重点专科建设项目(闽卫医政函〔2023〕1163号)
福建医科大学启航基金项目(2022QH1212)

编委: 张辉

版权

版权所有 © 2023中国当代儿科杂志
PDF(671 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/